Reputation: 2370
I have a df with IDs
id
0 1
1 2
2 3
3 4
and need to "left-join" (or left-merge) several data frames to it, one after another.
id text
0 1 Hello
1 2 World
2 100 Hello
and
id text
0 3 World
1 101 Hello
Note: I can not load all dfs at once because of RAM.
A standard "left-join"...
import pandas as pd
df1 = pd.DataFrame({'id': [1,2,3,4]})
df2 = pd.DataFrame({'id': [1,2,100],
'text': ['Hello', 'World','Hello']})
df3 = pd.DataFrame({'id': [3,101],
'text': ['World', 'Hello']})
m1 = pd.merge(left=df1, right=df2, on="id", how="left")
m2 = pd.merge(left=m1, right=df3, on="id", how="left")
...gives me:
id text_x text_y
0 1 Hello NaN
1 2 World NaN
2 3 NaN World
3 4 NaN NaN
However, I would like to "update" the right-joined column so that I get:
id text
0 1 Hello
1 2 World
2 3 World
3 4 NaN
Is there a way to do this with pd.merge?
Upvotes: 1
Views: 571
Reputation: 323326
This is more like a update
problem
df1['text']=np.nan
df1.set_index('id',inplace=True)
df1.update(df2.set_index('id'))
df1.update(df3.set_index('id'))
df1.reset_index(inplace=True)
df1
Out[54]:
id text
0 1 Hello
1 2 World
2 3 World
3 4 NaN
Upvotes: 3
Reputation: 42916
Are you looking for something like this?
First we use np.where
to conditionally fill our text
column, after that we drop the columns we dont need.
m2['text'] = np.where(m2.text_x.isnull(), m2.text_y, m2.text_x)
m2.drop(['text_x', 'text_y'], axis=1, inplace=True)
id text
0 1 Hello
1 2 World
2 3 World
3 4 NaN
Explanation
np.where
works as following:
np.where(condition, true value, false value)
Upvotes: 2