ziji
ziji

Reputation: 85

Split autoencoder on encoder and decoder keras

I am trying to create an autoencoder for:

  1. Train the model
  2. Split encoder and decoder
  3. Visualise compressed data (encoder)
  4. Use arbitrary compressed data to get the output (decoder)
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras import backend as K
from keras.datasets import mnist
import numpy as np

(x_train, _), (x_test, _) = mnist.load_data()

x_train = x_train.astype('float32') / 255.
x_train = x_train[:100,:,:,]
x_test = x_test.astype('float32') / 255.
x_test = x_train
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))  # adapt this if using `channels_first` image data format
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))  # adapt this if using `channels_first` image data format
 input_img = Input(shape=(28, 28, 1))  # adapt this if using `channels_first` image data format

x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)

# at this point the representation is (7, 7, 32)

decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(decoder)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

autoencoder = Model(input_img, decoded(encoded(input_img)))
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')

autoencoder.fit(x_train, x_train,
                epochs=10,
                batch_size=128,
                shuffle=True,
                validation_data=(x_test, x_test),
                #callbacks=[TensorBoard(log_dir='/tmp/tb', histogram_freq=0, write_graph=False)]
               )

How to split train it and split with the trained weights?

Upvotes: 4

Views: 3595

Answers (1)

Daniel Möller
Daniel Möller

Reputation: 86600

Make encoder:

input_img = Input(shape=(28, 28, 1))

x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)

encoder = Model(input_img, encoded)

Make decoder:

decoder_input= Input(shape_equal_to_encoder_output_shape)

decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(decoder_input)
x = UpSampling2D((2, 2))(decoder)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

decoder = Model(decoder_input, decoded)

Make autoencoder:

auto_input = Input(shape=(28,28,1))
encoded = encoder(auto_input)
decoded = decoder(encoded)

auto_encoder = Model(auto_input, decoded)

Now you can use any of them any way you want to.

  1. train the autoencoder
  2. use the encoder and decoder

Upvotes: 9

Related Questions