stevesy
stevesy

Reputation: 247

Use unique values for a column in pandas

I have a dataframe in pandas which has five columns: contig, length, identity, percent and hit. This data is parsed from a BLAST output and sorted by contig length and percent match. My goal is to have output writing only a line for each unique contig. An example of the output:

   contig        length  identity     percent  hit                                                                             
   contig-100_0  5485    [1341/1341]  [100.%]  ['hit1']
   contig-100_0  5485    [5445/5445]  [100.%]  ['hit2']
   contig-100_0  5485        [59/59]  [100.%]  ['hit3']
   contig-100_1  2865    [2865/2865]  [100.%]  ['hit1']
   contig-100_2  2800    [2472/2746]  [90.0%]  ['hit1']
   contig-100_3  2417    [2332/2342]  [99.5%]  ['hit1']
   contig-100_4  2204    [2107/2107]  [100.%]  ['hit1']
   contig-100_4  2000    [1935/1959]  [98.7%]  ['hit2']

I would want the above to look like this:

   contig        length  identity     percent  hit                                                                             
   contig-100_0  5485    [1341/1341]  [100.%]  ['hit1']
   contig-100_1  2865    [2865/2865]  [100.%]  ['hit1']
   contig-100_2  2800    [2472/2746]  [90.0%]  ['hit1']
   contig-100_3  2417    [2332/2342]  [99.5%]  ['hit1']
   contig-100_4  2204    [2107/2107]  [100.%]  ['hit1']

Here is the code I use to produce the output above:

df = pd.read_csv(path+i,sep='\t', header=None, engine='python', \ 
     names=['contig','length','identity','percent','hit'])
df = df.sort_values(['length', 'percent'], ascending=[False, False])
top_hits = df.to_string(justify='left',index=False)
with open ('sorted_contigs', 'a') as sortedfile:
    sortedfile.write(top_hits+"\n")

I know about the unique() method in pandas and think the syntax I need to use is df.contig.unique() but I am not sure where in the code I would place it. I am still learning pandas so any help is appreciated! Thank you.

Upvotes: 0

Views: 36

Answers (1)

Ohad Chaet
Ohad Chaet

Reputation: 519

You may do it with DataFrame.groupby(<colname>).head(<num_of_rows>):

df.groupby('contig').head(1)

And the output:

          contig    length  identity    percent hit
0   contig-100_0    5485    [1341/1341] [100.%] ['hit1']
3   contig-100_1    2865    [2865/2865] [100.%] ['hit1']
4   contig-100_2    2800    [2472/2746] [90.0%] ['hit1']
5   contig-100_3    2417    [2332/2342] [99.5%] ['hit1']
6   contig-100_4    2204    [2107/2107] [100.%] ['hit1']

Upvotes: 3

Related Questions