Reputation: 2117
I am working with the netaddr python library. I have 2 dataframes one with IP ranges that I convert to CIDR notation and one that has IP address that I would like to see if they fall in any of the ranges.
Create Range Dataframe:
import pandas as pd
import netaddr
from netaddr import *
a = {'StartAddress': ['65.14.88.64', '148.77.37.88', '65.14.41.128', '65.14.40.0'],
'EndAddress': ['65.14.88.95', '148.77.37.95','65.14.41.135', '65.14.40.255']}
df1 = pd.DataFrame(data=a)
#Convert range to netaddr cidr format
def rangetocidr(row):
return netaddr.iprange_to_cidrs(row.StartAddress, row.EndAddress)
df1["CIDR"] = df1.apply(rangetocidr, axis=1)
df1
StartAddress EndAddress CIDR
0 65.14.88.64 65.14.88.95 [65.14.88.64/27]
1 148.77.37.88 148.77.37.95 [148.77.37.88/29]
2 65.14.41.128 65.14.41.135 [65.14.41.128/29]
3 65.14.40.0 65.14.40.255 [65.14.40.0/24]
df1["CIDR"].iloc[0]
[IPNetwork('65.14.88.64/27')]
Create IP dataframe:
b = {'IP': ['65.13.88.64', '148.65.37.88','65.14.88.65','148.77.37.93','66.15.41.132']}
df2 = pd.DataFrame(data=b)
#Convert ip to netaddr format
def iptonetaddrformat (row):
return netaddr.IPAddress(row.IP)
df2["IP_Format"] = df2.apply(iptonetaddrformat, axis=1)
df2
IP IP_Format
0 65.13.88.64 65.13.88.64
1 148.65.37.88 148.65.37.88
2 65.14.88.65 65.14.88.65
3 148.77.37.93 148.77.37.93
4 66.15.41.132 66.15.41.132
df2["IP_Format"].iloc[0]
IPAddress('65.13.88.64')
I am looking to add a column to df2
if the ips are in the cidr blocks from df1
. So it would look like:
df2
IP IP_Format IN_CIDR
0 65.13.88.64 65.13.88.64 False
1 148.65.37.88 148.65.37.88 False
2 65.14.88.65 65.14.88.65 True
3 148.77.37.93 148.77.37.93 True
4 66.15.41.132 66.15.41.132 False
I would prefer to perform this just using columns from 2 dataframes but have tried this by converting the columns to lists and using the following, but this doesnt seem to work:
df2list = repr(df2[['IP_Format']])
df1list = df[['CIDR']]
def ipincidr (row):
return netaddr.largest_matching_cidr(df2list, df1list)
df2['INRANGE'] = df2.apply(ipincidr, axis=1)
Upvotes: 1
Views: 450
Reputation: 3967
The following solution is based on the assumption that only fourth group of IP changes and first three remains intact as shown in question.
# Splitting IP into 2 parts __.__.__ and __.
# Doing this for IP from df2 along with Start and End columns from df1
ip = pd.DataFrame(df2.IP.str.rsplit('.', 1, expand=True))
ip.columns = ['IP_init', 'IP_last']
start = pd.DataFrame(df1.StartAddress.str.rsplit('.', 1, expand=True))
start.columns = ['start_init', 'start_last']
end = pd.DataFrame(df1.EndAddress.str.rsplit('.', 1, expand=True))
end.columns = ['end_init', 'end_last']
df = pd.concat([ip, start, end], axis=1)
# Checking if any IP belongs to any of the given blocks, if yes, note their index
index = []
for idx, val in enumerate(df.itertuples()):
for i in range(df.start_init.count()):
if df.loc[idx, 'IP_init'] == df.loc[i, 'start_init']:
if df.loc[idx, 'IP_last'] >= df.loc[i, 'start_last']
and df.loc[idx, 'IP_last'] <= df.loc[i, 'end_last']:
index.append(idx)
break
# Creating column IN_CIDR and marking True against the row which exists in IP block
df2['IN_CIDR'] = False
df2.loc[index, 'IN_CIDR'] = True
df2
IP IP_Format IN_CIDR
0 65.13.88.64 65.13.88.64 False
1 148.65.37.88 148.65.37.88 False
2 65.14.88.65 65.14.88.65 True
3 148.77.37.93 148.77.37.93 True
4 66.15.41.132 66.15.41.132 False
Note - You may also use np.where
to skip first iteration using np.where(df.IP_init.isin(df.start_init), True, False)
which results to [False, False, True, True, False]
and thus you can focus later only on the True
rows and thus reducing overhead.
Upvotes: 1