Reputation: 5
I have a Dataframe with date and id (sorted).
> date id newid (expected result)
> 2019-01-01 10:00 1 20190101000001-A
> 2019-01-01 11:00 1 20190101000002-A
> 2019-01-01 12:00 1 20190101000003-A
> 2019-01-01 19:00 2 20190101000001-A
> 2019-01-02 09:00 2 20190102000001-A
> 2019-01-02 10:00 2 20190102000002-A
> 2019-01-05 15:00 3 20190103000001-A
def create_new_id(params):
if (previous_date != recent_date) or (previous_id != recent_id):
new_id = 'date000001-A'
if (previous_date == recent_date) and (previous_id == recent_id):
new_id = previous_new_id + 1# (change date000001-A to date000002-A)
return new_id
As an Example data, I want to generate a new id by creating a condition to check previous value.
I try to use by this
df['newid ] = df.rolling(window=2).apply(create_new_id)
but I don't know the correct way to use.
Upvotes: 0
Views: 66
Reputation: 6166
Try
df['newid'] = df['date'].dt.strftime('%Y%m%d')+(df.groupby([df['date'].dt.date,'id']).cumcount()+1).astype(str).str.zfill(6) + '-A'
print(df)
# print
date id newid
0 2019-01-01 10:00:00 1 20190101000001-A
1 2019-01-01 11:00:00 1 20190101000002-A
2 2019-01-01 12:00:00 1 20190101000003-A
3 2019-01-01 19:00:00 2 20190101000001-A
4 2019-01-02 09:00:00 2 20190102000001-A
5 2019-01-02 10:00:00 2 20190102000002-A
6 2019-01-05 15:00:00 3 20190105000001-A
Upvotes: 1