Reputation: 2514
Consider the following dataset where id
uniquely identifies a person, and name
varies within id
only to the extent of minor spelling issues. I want to aggregate to id
level using dplyr
:
df= data.frame(id=c(1,1,1,2,2,2),name=c('michael c.','mike', 'michael','','John',NA),var=1:6)
Using group_by(id)
yields the correct computation, but I lose the name column:
df %>% group_by(id) %>% summarise(newvar=sum(var)) %>%ungroup()
A tibble: 2 x 2
id newvar
<dbl> <int>
1 1 6
2 2 15
Using group_by(id,name)
yields both name and id but obviously the "wrong" sums.
I would like to keep the last non-missing observatoin of the name within each group. I basically lack a dplyr
version of Statas lastnm()
function:
df %>% group_by(id) %>% summarise(sum = sum(var), Name = lastnm(name))
id sum Name
1 1 6 michael
2 2 15 John
Is there a "keep last non missing"-option?
Upvotes: 2
Views: 730
Reputation: 2514
I posted a feature request on dplyrs github thread, and the reponse there is actually the best answer. For sake of completion I repost it here:
df %>%
group_by(id) %>%
summarise(sum=sum(var), Name=last(name[!is.na(name)]))
#> # A tibble: 2 x 3
#> id sum Name
#> <dbl> <int> <chr>
#> 1 1 6 michael
#> 2 2 15 John
Upvotes: 0
Reputation: 269431
1) Use mutate
like this:
df %>%
group_by(id) %>%
mutate(sum = sum(var)) %>%
ungroup
giving:
# A tibble: 6 x 4
id name var sum
<dbl> <fct> <int> <int>
1 1 michael c. 1 6
2 1 mike 2 6
3 1 michael 3 6
4 2 john 4 15
5 2 john 5 15
6 2 john 6 15
2) Another possibility is:
df %>%
group_by(id) %>%
summarize(name = name %>% unique %>% toString, sum = sum(var)) %>%
ungroup
giving:
# A tibble: 2 x 3
id name sum
<dbl> <chr> <int>
1 1 michael c., mike, michael 6
2 2 john 15
3) Another variation is to only report the first name in each group:
df %>%
group_by(id) %>%
summarize(name = first(name), sum = sum(var)) %>%
ungroup
giving:
# A tibble: 2 x 3
id name sum
<dbl> <fct> <int>
1 1 michael c. 6
2 2 john 15
Upvotes: 3