Reputation: 91
I want to create a new column with a max values calculation on the first column, as follows:
High Highest2P Highest3P
0 101.0 102.0 103.0
1 102.0 103.0 109.0
2 103.0 109.0 109.0
3 109.0 109.0
4 100.0
from pandas import *
df = pd.DataFrame({
"High": pd.Series( [101.0, 102.0, 103.0, 109.0, 100.0] )
})
def calcHighest2P(x): return max(df["High"], df["High"].shift(-1))
def calcHighest3P(x): return max(df["High"], df["High"].shift(-1), df["High"].shift(-2))
df["Highest2P"] = calcHighest2P(df["High"])
df["Highest3P"] = calcHighest3P(df["High"])
But I get the following error message: "ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all()."
Upvotes: 1
Views: 87
Reputation: 402333
You can use Rolling.max
with assign
:
df.assign(**{
f'Highest{i}P': pd.Series(df.High.rolling(i).max().dropna().values)
for i in range(2, 4)}
)
High Highest2P Highest3P
0 101.0 102.0 103.0
1 102.0 103.0 109.0
2 103.0 109.0 109.0
3 109.0 109.0 NaN
4 100.0 NaN NaN
Upvotes: 1