Reputation: 758
So I am trying to find the corners of an object using Harris Corner detection in opencv. I should be getting 5 exact corners but instead I am getting 6. There seems to be a problem.
import cv2
import numpy as np
def find_centroids(dst):
ret, dst = cv2.threshold(dst, 0.01 * dst.max(), 255, 0)
dst = np.uint8(dst)
# find centroids
ret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst)
# define the criteria to stop and refine the corners
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100,
0.001)
corners = cv2.cornerSubPix(gray,np.float32(centroids),(5,5),
(-1,-1),criteria)
return corners
image = cv2.imread("C:\\Users\\Jimit\\Desktop\\Project\\lmao.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 3, 3, 0.04)
dst = cv2.dilate(dst, None)
# Threshold for an optimal value, it may vary depending on the image.
# image[dst > 0.01*dst.max()] = [0, 0, 255]
# Get coordinates
corners = find_centroids(dst)
# To draw the corners
for corner in corners:
image[int(corner[1]), int(corner[0])] = [0, 0, 255]
int_corners = np.asarray(corners, dtype = int)
print (int_corners)
print ("Pixels for corner 1 is: ", int_corners[0])
print ("Pixels for corner 2 is: ", int_corners[1])
print ("Pixels for corner 3 is: ", int_corners[2])
cv2.imshow('dst', image)
cv2.imwrite('corners.jpg', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
Original Image
Desired Output corner points
The extra corner
6 corner pixels
Upvotes: 2
Views: 1982
Reputation: 11420
Your problem is in this line:
ret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst)
You assume that all the centroids/labels are for each of the corners... but one is actually for the background (label 0) as it is explained in the documentation:
centroid output for each label, including the background label. Centroids are accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
and also:
returns N, the total number of labels [0, N-1] where 0 represents the background label.
Now, knowing this, the solution is easy, just replace this instruction:
corners = cv2.cornerSubPix(gray,np.float32(centroids),(5,5),
(-1,-1),criteria)
with:
corners = cv2.cornerSubPix(gray,np.float32(centroids[1:]),(5,5),
(-1,-1),criteria)
note the [1:]
in centroids
. This will give you the following points:
[[223 121]
[153 191]
[290 194]
[152 275]
[287 277]]
As you can see the first point is removed.
Upvotes: 2