Reputation: 497
i am doing some research about implementing a Savitzky-Golay filter for images. As far as i have read, the main application for this filter is signal processing, e.g. for smoothing audio-files.
The idea is fitting a polynomial through a defined neighbourhood around point P(i) and setting this point P to his new value P_new(i) = polynomial(i).
The problem in 2D-space is - in my opinion - that there is not only one direction to do the fitting. You can use different "directions" to find a polynomial. Like for
[51 52 11 33 34]
[41 42 12 24 01]
[01 02 PP 03 04]
[21 23 13 43 44]
[31 32 14 53 54]
It could be:
[01 02 PP 03 04], (horizontal)
[11 12 PP 23 24], (vertical)
[51 42 PP 43 54], (diagonal)
[41 42 PP 43 44], (semi-diagonal?)
but also
[41 02 PP 03 44], (semi-diagonal as well)
(see my illustration)
So my question is: Does the Savitzky-Golay filter even make sense for 2D-space, and if yes, is there and any defined generalized form for this filter for higher dimensions and larger filter masks?
Thank you !
Upvotes: 0
Views: 1058
Reputation:
A first option is to use SG filtering in a separable way, i.e. filtering once on the horizontal rows, then a second time on the vertical rows.
A second option is to rewrite the equations with a bivariate polynomial (bicubic f.i.) and solve for the coefficients by least-squares.
Upvotes: 1