Reputation: 2717
This is my dataframe:
df = pd.DataFrame({'a': list('xxxxxzzz'), 'b':[0,0,1,0,1,0,1,1], 'c': [100, 101, 105, 110, 120, 125, 100, 150], 'd':[0,0,0,1,1,0,0,0]})
I group them:
groups = df.groupby(['a', 'd'])
I want to add another column to df
that in each group shows the difference (in percentage) between the last value of c
that its b
is 0 and the last value that its b
is 1.
For example in the first group I want to compare c
of row 2 and row 1.
My desired groups
looks like this:
('x', 0)
a b c d result
0 x 0 100 0 3.96
1 x 0 101 0 3.96
2 x 1 105 0 3.96
('x', 1)
a b c d result
3 x 0 110 1 9.09
4 x 1 120 1 9.09
('z', 0)
a b c d result
5 z 0 125 0 20.0
6 z 1 100 0 20.0
7 z 1 150 0 20.0
Upvotes: 1
Views: 236
Reputation: 42916
We can do the following here:
.pct_change
method to calculate the percent change of each rowresult
column with NaN
fillna
with bfill
or ffill
# first we apply .pct_change to all rows
df['result'] = abs(round(df.groupby(['a', 'd', 'b']).c.pct_change() * 100, 2))
# after that we check if the value if b = 1 and the value of the row before = 0 and we fill in NaN if condition not true
df['result'] = np.where((df.b == 1) & (df.b.shift(1) == 0), df.result, np.NaN)
So we get:
a b c d result
0 x 0 100 0 NaN
1 x 0 101 0 NaN
2 x 1 105 0 3.96
3 x 0 110 1 NaN
4 x 1 120 1 9.09
5 z 0 125 0 NaN
6 z 1 100 0 20.00
7 z 1 150 0 NaN
# then backfill and forwardfill NaN
df.result.fillna(method='bfill', inplace=True)
df.result.fillna(method='ffill', inplace=True)
print(df)
a b c d result
0 x 0 100 0 3.96
1 x 0 101 0 3.96
2 x 1 105 0 3.96
3 x 0 110 1 9.09
4 x 1 120 1 9.09
5 z 0 125 0 20.00
6 z 1 100 0 20.00
7 z 1 150 0 20.00
Upvotes: 1
Reputation: 59274
Define a custom function and use GroupBy.apply
def func(s):
l0 = s[s.b==0].tail(1).c.item()
l1 = s[s.b==1].tail(1).c.item()
s['result'] = (l1 - l0)/l0 * 100
return s
df.groupby(['a','d']).apply(func)
Outputs
a b c d result
0 x 0 100 0 3.960396
1 x 0 101 0 3.960396
2 x 1 105 0 3.960396
3 x 0 110 1 9.090909
4 x 1 120 1 9.090909
5 z 0 125 0 20.000000
6 z 1 100 0 20.000000
7 z 1 150 0 20.000000
If you need each groups separately, just use a list comprehension [func(g) for n, g in df.groupby(['a','d'])]
Upvotes: 1