Reputation: 2146
I have a df like below, (initial 2 rows are text and 1st column is date)
In [4]: df
Out[4]:
test bs dv if ir md qb sy tb
0 TESTacc a10900 a10900 a10900 IJJMKK11 a10900 a10900 a10900 a10900
1 01-Feb-2019 18.8668013 4.6021207 0.9330807 13.9766832 2.9002571 0.2824343 0.8280988 0.8587644
2 04-Feb-2019 16.187526 3.1000162 0.4145835 14.6465183 2.848472 0.2516608 0.8618771 0.218063
I need to get have this csv with 3 decimal precision Also I need to add a "Total" Column (rightmost column) I have tried the below things, but these are not proper
To add the total column I did:
ndf=df.iloc[2:,1:] #take only numerics in ndf
ndf = ndf.apply(pd.to_numeric)
ndf=ndf.round(3)
df['total']=ndf.sum(axis=1)
This is not a proper way of doing simple thing like adding a total column
So I tried
df=df.apply(pd.to_numeric,errors='ignore')
but round still wont work on df
My intent is to just add a Total column and have all numbers rounded to 3 decimals.
Additional: Once this is done I would add a last row as median row, having median for each column
Upvotes: 12
Views: 19350
Reputation: 1652
According to the latest pandas documentation 1.0.3 you can sum only numeric columns with the following code:
df_sum = df.sum(numeric_only = True)
This will sum all numeric columns in df
and assign it to variable df_sum
.
Upvotes: 24
Reputation: 75140
IIUC, you may need:
df['sum']=df.apply(lambda x: pd.to_numeric(x,errors='coerce')).sum(axis=1).round(3)
#for median: df.apply(lambda x: pd.to_numeric(x,errors='coerce')).median(axis=1).round(3)
print(df)
test bs dv if ir md \
0 TESTacc a10900 a10900 a10900 IJJMKK11 a10900
1 01-Feb-2019 18.8668013 4.6021207 0.9330807 13.9766832 2.9002571
2 04-Feb-2019 16.187526 3.1000162 0.4145835 14.6465183 2.848472
qb sy tb sum
0 a10900 a10900 a10900 0.000
1 0.2824343 0.8280988 0.8587644 43.248
2 0.2516608 0.8618771 0.218063 38.529
EDIT you can use, df.where()
to round all neumerics as :
df['sum']=df.apply(lambda x: pd.to_numeric(x,errors='coerce')).sum(axis=1)
df=(df.where(df.apply(lambda x: pd.to_numeric(x,errors='coerce')).isna(),
df.apply(lambda x: pd.to_numeric(x,errors='coerce')).round(3)))
print(df)
test bs dv if ir md qb sy \
0 TESTacc a10900 a10900 a10900 IJJMKK11 a10900 a10900 a10900
1 01-Feb-2019 18.867 4.602 0.933 13.977 2.9 0.282 0.828
2 04-Feb-2019 16.188 3.1 0.415 14.647 2.848 0.252 0.862
tb sum
0 a10900 0.000
1 0.859 86.496
2 0.218 77.057
Upvotes: 2