Reputation: 811
I would like to create averages of all the variables of a SpatialPointsDataFrame when points are within a specified distance. I have a method for doing this but it seems like a silly way to approach the problem. Any ideas for doing this using modern syntax of the tidy variety would be appreciated.
To start, I have a SpatialPointsDataFrame
with several variables measured for each point. I'd like to get an average value of all the variables for points within a specified distance. E.g., getting average cadmium values from the meuse
data for points within 100 m of each other:
library(sf)
library(sp)
data(meuse)
pts <- st_as_sf(meuse, coords = c("x", "y"),remove=FALSE)
pts100 <- st_is_within_distance(pts, dist = 100)
# can use sapply to get mean of a variable. E.g., cadmium
sapply(pts100, function(x){ mean(pts$cadmium[x]) })
So, I've figured out how to use sapply
to do this variable by variable. So I could, if I wanted, calculate the mean for each variable, generate a centroid for each point and then a SpatialPointsDataFrame
of the unique values. E.g., for the first few variables:
res <- data.frame(id=1:length(pts100),
x=NA, y=NA,
cadmium=NA, copper=NA, lead=NA)
res$x <- sapply(pts100, function(p){ mean(pts$x[p]) })
res$y <- sapply(pts100, function(p){ mean(pts$y[p]) })
res$cadmium <- sapply(pts100, function(p){ mean(pts$cadmium[p]) })
res$copper <- sapply(pts100, function(p){ mean(pts$copper[p]) })
res$lead <- sapply(pts100, function(p){ mean(pts$lead[p]) })
res2 <- res[duplicated(res$cadmium),]
coordinates(res2) <- c("x","y")
bubble(res2,"cadmium")
This works but seems cumbersome and like there must be a more efficient way.
Upvotes: 4
Views: 1321
Reputation: 5489
It looks like there's an aggregate function for the sf
package that has a join argument where you can specify the join type.
ibrary(sf)
library(sp)
data(meuse)
pts <- st_as_sf(meuse, coords = c("x", "y"),remove=FALSE)
# This will give lots of warnings since there are non-numeric columns
pts_agg <- aggregate(pts,
pts,
FUN = mean,
join = function(x, y) st_is_within_distance(x, y, dist = 100))
head(pts_agg)
Simple feature collection with 6 features and 14 fields
geometry type: POINT
dimension: XY
bbox: xmin: 181025 ymin: 333260 xmax: 181390 ymax: 333611
CRS: NA
x y cadmium copper lead zinc elev dist om ffreq soil lime landuse dist.m
1 181048.5 333584.5 10.15 83 288 1081.5 7.446 0.006791165 13.8 NA NA NA NA 40
2 181048.5 333584.5 10.15 83 288 1081.5 7.446 0.006791165 13.8 NA NA NA NA 40
3 181165.0 333537.0 6.50 68 199 640.0 7.800 0.103029000 13.0 NA NA NA NA 150
4 181298.0 333484.0 2.60 81 116 257.0 7.655 0.190094000 8.0 NA NA NA NA 270
5 181307.0 333330.0 2.80 48 117 269.0 7.480 0.277090000 8.7 NA NA NA NA 380
6 181390.0 333260.0 3.00 61 137 281.0 7.791 0.364067000 7.8 NA NA NA NA 470
geometry
1 POINT (181072 333611)
2 POINT (181025 333558)
3 POINT (181165 333537)
4 POINT (181298 333484)
5 POINT (181307 333330)
6 POINT (181390 333260)
Spot check pts 9th row, as it had a few matches in pts100:
> pts[pts100[[9]], 'cadmium'] %>% st_drop_geometry %>% summarise(mean = mean(cadmium))
mean
1 2.25
> pts_agg[9,'cadmium']
Simple feature collection with 1 feature and 1 field
geometry type: POINT
dimension: XY
bbox: xmin: 181060 ymin: 333231 xmax: 181060 ymax: 333231
CRS: NA
cadmium geometry
9 2.25 POINT (181060 333231)
Upvotes: 2