Reputation: 963
I got nothing from google or github.
Up to now, I have to slice two blobs with shape [N,C,H,W] to 2*C blobs with shape [N,1,H,W], and permute new blobs to shape [N, H, W, 1], then pooling with kernel size=1 on the new blobs. And concatenate to [N,H,W,C] and permute to [N,C,H,W] finally.
Any good channel wise pooling implementation?
Upvotes: 0
Views: 215
Reputation: 5084
For me it sounds like not a channel-wise pooling (which must produce a single output channel), but element-wise MAX operation:
layer {
name: "input_1"
type: "Input"
top: "input_1"
input_param {
shape {
dim: 1
dim: 2
dim: 3
dim: 3
}
}
}
layer {
name: "input_2"
type: "Input"
top: "input_2"
input_param {
shape {
dim: 1
dim: 2
dim: 3
dim: 3
}
}
}
layer {
name: "channel_max"
type: "Eltwise"
bottom: "input_1"
bottom: "input_2"
top: "channel_max"
eltwise_param {
operation: MAX
}
}
The following code:
import caffe
import numpy as np
caffe.set_mode_cpu()
net = caffe.Net('net.prototxt', 1)
net.blobs['input_1'].data[...] = np.random.randint(10, size=(1, 2, 3, 3))
net.blobs['input_2'].data[...] = np.random.randint(10, size=(1, 2, 3, 3))
net.forward()
print('Blob #1:')
print(net.blobs['input_1'].data)
print('Blob #2:')
print(net.blobs['input_2'].data)
print('Result:')
print(net.blobs['channel_max'].data)
Merges the two blobs into one with the same number of channels filled with max values of the feature maps:
Blob #1:
[[[[5. 6. 5.]
[1. 6. 1.]
[4. 7. 6.]]
[[9. 8. 3.]
[8. 8. 8.]
[6. 9. 9.]]]]
Blob #2:
[[[[4. 1. 1.]
[2. 1. 3.]
[6. 1. 0.]]
[[3. 8. 7.]
[8. 2. 4.]
[2. 8. 1.]]]]
Result:
[[[[5. 6. 5.]
[2. 6. 3.]
[6. 7. 6.]]
[[9. 8. 7.]
[8. 8. 8.]
[6. 9. 9.]]]]
Upvotes: 0