Reputation: 910
I want to remove rows where multiple columns have the same values. I read this question about two columns and tried to extend to multiple columns, however I get an error.
Here is some sample data, similar to my dataframe:
import pandas as pd
data = [['table1',10,8,7],['table2',3,3,3],['table3',3,8,11],['table4',12,12,12],['table5',13,15,5]]
df = pd.DataFrame(data,columns=['table_name','Attr1','Attr2','Attr3'])
and my desired result
res = [['table1',10,8,7],['table3',3,8,11],['table5',13,15,5]]
result = pd.DataFrame(res,columns=['table_name','Attr1','Attr2','Attr3'])
I tried
[df[df['Attr1'] != df['Attr2'] | df['Attr1'] != df['Attr3'] | df['Attr2'] != df['Attr3']]]
which retrieves the error
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
Any ideas?
Upvotes: 1
Views: 1086
Reputation: 18647
Boolean index with the condition being that the number of unique values across axis 1, must be equal to the width of the DataFrame
:
df = df[df.nunique(axis=1).eq(df.shape[1])]
Upvotes: 2
Reputation: 109546
You can create conditions for each and then perform your comparison:
c1 = df['Attr1'].ne(df['Attr2'])
c2 = df['Attr1'].ne(df['Attr3'])
c3 = df['Attr2'].ne(df['Attr3'])
>>> df[c1 | c2 | c3]
table_name Attr1 Attr2 Attr3
0 table1 10 8 7
2 table3 3 8 11
4 table5 13 15 5
Each condition will be a series indicating whether or not the inequality holds, e.g.
>>> c1
0 True
1 False
2 True
3 False
4 True
dtype: bool
>>> c1 | c2 | c3
0 True
1 False
2 True
3 False
4 True
dtype: bool
Upvotes: 2
Reputation: 862701
Use DataFrame.ne
for compare all values by Attr1
column and test if at least one True
per row by DataFrame.any
, last filter by boolean indexing
:
df = df[df[['Attr1','Attr2','Attr3']].ne(df['Attr1'], axis=0).any(axis=1)]
print (df)
table_name Attr1 Attr2 Attr3
0 table1 10 8 7
2 table3 3 8 11
4 table5 13 15 5
Details:
print (df[['Attr1','Attr2','Attr3']].ne(df['Attr1'], axis=0))
Attr1 Attr2 Attr3
0 False True True
1 False False False
2 False True True
3 False False False
4 False True True
print (df[['Attr1','Attr2','Attr3']].ne(df['Attr1'], axis=0).any(axis=1))
0 True
1 False
2 True
3 False
4 True
dtype: bool
Another solution is test number of unique values by DataFrame.nunique
:
df = df[df[['Attr1','Attr2','Attr3']].nunique(axis=1).ne(1)]
Upvotes: 2