Reputation: 363
I'm using a multi index columns dataframe with custom dates (specific holidays,weekdays..).
DatetimeIndex(['1989-01-31', '1989-02-01', '1989-02-02', '1989-02-03',
'1989-02-06', '1989-02-07', '1989-02-08', '1989-02-09',
'1989-02-10', '1989-02-13',
...
'2019-02-25', '2019-02-26', '2019-02-27', '2019-02-28',
'2019-03-01', '2019-03-04', '2019-03-05', '2019-03-06',
'2019-03-07', '2019-03-08'],
dtype='datetime64[ns]', length=7585, freq=None)
I need to slice it for first or last day of the month from the index. Due to holidays,... some first/last day of the month of the index would not match with freq = 'BM'. No need to mention i cannot use resample(),...
Here an example:
import pandas as pd
import numpy as np
idx = pd.DatetimeIndex(['1989-01-31', '1989-02-01', '1989-02-02', '1989-02-03','1989-02-06', '1989-02-07', '1989-02-08', '1989-02-09','1989-02-10', '1989-02-13', '2019-02-25', '2019-02-26', '2019-02-27', '2019-02-28','2019-03-01', '2019-03-04', '2019-03-05', '2019-03-06','2019-03-07', '2019-03-08'], dtype='datetime64[ns]')
numbers = [0, 1, 2]
colors = [u'green', u'purple']
col = pd.MultiIndex.from_product([numbers, colors],names=['number', 'color'])
df = pd.DataFrame(np.random.rand(len(idx),len(col)),index =idx,columns=col)
number 0 1 2
color green purple green purple green purple
2018-06-05 0.64943 0.64943 0.64943 0.64943 0.64943 0.64943
etc...
Expected Output:
2018-06-29 0.64943 0.64943 0.64943 0.64943 0.64943 0.64943
How could i do this please ?
thanks
Upvotes: 2
Views: 2042
Reputation: 1680
You need to use a Grouper
on your DataFrame. Using the mcve in the above question:
# Month End
df.groupby(pd.Grouper(freq='M')).last()
# Month Start
df.groupby(pd.Grouper(freq='MS')).first()
Note: Grouping in this manner groups by the DateTimeIndex month, whose group min and max months are calendrical and not necessarily in the index.
So we can go after a grouping of our own, requiring attention to months repeating over the years.
grpr = df.groupby([df.index.year, df.index.month])
data = []
for g, gdf in grpr:
data.append(gdf.loc[gdf.index.min()])
data.append(gdf.loc[gdf.index.max()])
new_df = pd.DataFrame(data)
new_df
number 0 1 2
color green purple green purple green purple
1989-01-31 0.246601 0.915123 0.105688 0.645864 0.845655 0.339800
1989-01-31 0.246601 0.915123 0.105688 0.645864 0.845655 0.339800
1989-02-01 0.694509 0.665852 0.593890 0.715831 0.474022 0.011742
1989-02-13 0.770202 0.452575 0.935573 0.554261 0.235477 0.475279
2019-02-25 0.626251 0.826958 0.617132 0.118507 0.079782 0.183616
2019-02-28 0.740565 0.131821 0.968403 0.981093 0.211755 0.806868
2019-03-01 0.812805 0.379727 0.758403 0.345361 0.908825 0.166638
2019-03-08 0.238481 0.045592 0.740523 0.201989 0.432714 0.672510
It is correct to see duplication because gdf.index.min()
may equal gdf.index.max()
. A check would eliminate duplication when iterating over the groups.
Upvotes: 3