Reputation: 5743
I am running into FailedPreconditionError error in tf.global_variables_initializer()
. I have zeroed-in on the following part of the code to be the culprit:
def __init__(...):
...
self.global_step = tf.get_variable(initializer=tf.zeros_initializer(), trainable=False, shape=(), name='global_step')
...
step_rampup_value = self.step_rampup(self.global_step, self.rampup_length)
def step_rampup(self, global_step, rampup_length):
result = tf.cond(global_step < rampup_length,
lambda: tf.constant(0.0),
lambda: tf.constant(1.0))
return tf.identity(result, name="step_rampup")
session.run(tf.global_variables_initilizer())
self.global_step
is to be incremented by 1
by optimizer at each iteration. It's value has to change. So, that is the behavior I want.
Error message:
FailedPreconditionError ...
506 with tf.Session(graph=highgraph) as session:
--> 507 session.run(tf.global_variables_initializer())
...
FailedPreconditionError: Attempting to use uninitialized value global_step
[[node global_step/read (defined at NML_U/sNeural.py:103) = Identity[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](global_step)]]
Why is that part of the code is culprit? Because, The following code works
def __init__(...):
...
self.global_step = tf.get_variable(initializer=tf.zeros_initializer(), trainable=False, shape=(), name='global_step')
...
step_rampup_value = self.step_rampup(self.global_step, self.rampup_length)
def step_rampup(self, global_step, rampup_length):
result = tf.cond(global_step.initialized_value() < rampup_length,
lambda: tf.constant(0.0),
lambda: tf.constant(1.0))
return tf.identity(result, name="step_rampup")
session.run(tf.global_variables_initilizer())
but that will evaluate the conditional with the initialized value of self.global_step(=0)
each time which is not the intended behavior
Also,
This code works as well:
def __init__(...):
...
self.global_step = tf.get_variable(initializer=tf.zeros_initializer(), trainable=False, shape=(), name='global_step')
self.global_step = tf.assign(self.global_step,0.)
...
step_rampup_value = self.step_rampup(self.global_step, self.rampup_length)
def step_rampup(self, global_step, rampup_length):
result = tf.cond(global_step < rampup_length,
lambda: tf.constant(0.0),
lambda: tf.constant(1.0))
return tf.identity(result, name="step_rampup")
session.run(tf.global_variables_initilizer())
But (maybe) this will again not lead to the dependency on global_step
but instead on assign op which will keep assigning 0
to self.global_step
How do I go about achieving the behavior?
Upvotes: 2
Views: 126
Reputation: 24581
You did not provide the full code, so I can only guess that you are perhaps calling tf.global_variables_initializer()
before __init__()
. Indeed the former will not initialize variables that are created after it has been called.
Upvotes: 1