Reputation: 67
I am fairly new to R. I wrote the below function which tries to summarise a dataframe, based on a feature variable (passed to the function as 'variable') and a target variable (passed to the function as target_var
). I also pass it a value (target_val
) on which to filter.
The function below falls over on the filter line (filter(target_var == target_val)
). I think it has something to do with quo
, quosure
etc, but can't figure out how to fix it. The following code should be ready to run - if you exclude the filter line it should work, if you included the filter line it will fall over.
library(dplyr)
target <- c('good', 'good', 'bad', 'good', 'good', 'bad')
var_1 <- c('debit_order', 'other', 'other', 'debit_order','debit_order','debit_order')
dset <- data.frame(target, var_1)
odds_by_var <- function(dataframe, variable, target_var, target_val){
df_name <- paste('odds', deparse(substitute(variable)), sep = "_")
variable_string <- deparse(substitute(variable))
target_string <- deparse(substitute(target_var))
temp_df1 <- dataframe %>%
group_by_(variable_string, target_string) %>%
summarise(cnt = n()) %>%
group_by_(variable_string) %>%
mutate(total = sum(cnt)) %>%
mutate(rate = cnt / total) %>%
filter(target_var == target_val)
assign(df_name, temp_df1, envir=.GlobalEnv)
}
odds_by_var(dset, var_1, target, 'bad')
Upvotes: 0
Views: 905
Reputation: 726
so I assume you want to filter by target good or bad.
In my understanding, always filter()
before you group_by()
, as you will possibly ommit your filter variables. I restructured your function a little:
dset <- data.frame(target, var_1)
odds_by_var <- function(dataframe, variable, target_var, target_val){
df_name <- paste('odds', deparse(substitute(variable)), sep = "_")
variable_string <- deparse(substitute(variable))
target_string <- deparse(substitute(target_var))
temp_df1 <- dataframe %>%
group_by_(variable_string, target_string) %>%
summarise(cnt = n()) %>%
mutate(total = sum(cnt),
rate = cnt / total)
names(temp_df1) <- c(variable_string,"target","cnt","total","rate" )
temp_df1 <- temp_df1[temp_df1$target == target_val,]
assign( df_name,temp_df1, envir=.GlobalEnv)
}
odds_by_var(dset, var_1, target, "bad")
result:
> odds_var_1
# A tibble: 2 x 5
# Groups: var_1 [2]
var_1 target cnt total rate
<chr> <chr> <int> <int> <dbl>
1 debit_order bad 1 4 0.25
2 other bad 1 2 0.5
Upvotes: 1