Reputation: 455
df23 = pd.DataFrame({'name':['MY NAME1', 'MY NAME2', 'MY NAME3','MY NAME4'],
'description': [['d1 d2 d3'], ['d4 d5 d6'], ['d7 d8 d9'],['a9 d0 t5']],
'specialties': ['green,red,blue', 'green,purple,pink', 'yellow,white,black,red,green', 'bub.tub,rub'],
})
df_work['name'] = [x for x in df_work['name'].map(lambda x: x.lower())]
I want to convert all entries in name col to lower. But i am getting this error.
Upvotes: 3
Views: 7840
Reputation: 2472
If df_work is an existing dataframe then you may use:
df_work['name'] = df23['name'].apply(lambda x: x.lower())
else use:
df_work = pd.DataFrame(df23['name'].apply(lambda x: x.lower()), columns = ['name'])
Upvotes: 3
Reputation: 2032
Try this:
df23['name'] = df23['name'].astype('str').map(lambda x: x.lower())
Upvotes: 1
Reputation: 863421
It seems some value is integer, so is necessary converting to string
:
df_work['name'] = [x for x in df_work['name'].map(lambda x: str(x).lower())]
Another solution with Series.astype
and Series.str.lower
:
df_work['name'] = df_work['name'].astype(str).str.lower()
Upvotes: 6