Reputation: 1500
I'm trying to perform a groupby on a table where given this groupby index, all values are either correct or Nan. EG:
id country name
0 1 France None
1 1 France Pierre
2 2 None Marge
3 1 None Pierre
4 3 USA Jim
5 3 None Jim
6 2 UK None
7 4 Spain Alvaro
8 2 None Marge
9 3 None Jim
10 4 Spain None
11 3 None Jim
I just want to get the values for each of the 4 people, which should never clash, eg:
country name
id
1 France Pierre
2 UK Marge
3 USA Jim
4 Spain Alvaro
I've tried:
groupby().first()
groupby.nth(0,dropna='any'/'all')
and even
groupby().apply(lambda x: x.loc[x.first_valid_index()])
All to no avail. What am I missing?
EDIT: to help you making the example dataframe for testing:
df = pd.DataFrame({'id':[1,1,2,1,3,3,2,4,2,3,4,3],'country':['France','France',None,None,'USA',None,'UK','Spain',None,None,'Spain',None],'name':[None,'Pierre','Marge','Pierre','Jim','Jim',None,'Alvaro','Marge','Jim',None,'Jim']})
Upvotes: 6
Views: 3538
Reputation: 38415
Pandas groupby.first returns first not-null value but does not support None, try
df.fillna(np.nan).groupby('id').first()
country name
id
1 France Pierre
2 UK Marge
3 USA Jim
4 Spain Alvaro
Upvotes: 8
Reputation: 59519
Possible specifying to dropna
when values are None
df.groupby('id').first(dropna=True)
country name
id
1 France Pierre
2 UK Marge
3 USA Jim
4 Spain Alvaro
Upvotes: 2