Reputation: 995
I made the following plot in my Rmarkdown file, and render it using Xaringan.
---
title: "myTitle"
output:
xaringan::moon_reader:
css: ["default", "kunoichi", "ninjutsu", "metropolis-fonts"]
lib_dir: libs
chakra: libs/remark-latest.min.js
seal: false
nature:
countIncrementalSlides: false
ratio: '16:9'
---
# Two pretty gaussians
## and a few vertical lines
```{r, echo=FALSE, message=FALSE, warning=FALSE}
library(cowplot)
ggplot(data = data.frame(x = c(-3, 3)), aes(x)) +
stat_function(fun = dnorm, n = 101, args = list(mean = 1, sd = 1)) +
stat_function(fun = dnorm, n = 101, args = list(mean = -1, sd = 1)) +
geom_vline(xintercept = 0, colour="black", linetype = "solid") +
geom_vline(xintercept = c(-1.5,1.5), colour="black", linetype = "longdash") +
ylab("Density") + xlab("\'Internal Signal\'") +
scale_y_continuous(breaks = NULL)
```
This results in the following presentation. I just want to make the plot smaller, without the indirect step of having to save it as an image, then calling it and scaling it.
Upvotes: 1
Views: 2219
Reputation: 12084
Using either out.width
or out.height
works, while maintaining the aspect ratio. Using them together allows you to alter the aspect ratio. Using either fig.width
or fig.height
, as suggested by @RichardTelford, works too, but doesn't maintain the aspect ratio. Nevertheless, you can use both together to get the correct aspect ratio.
Bottom line: if I just wanted to scale down the image, I'd use either out.width
or out.height
.
---
title: "myTitle"
output:
xaringan::moon_reader:
css: ["default", "kunoichi", "ninjutsu", "metropolis-fonts"]
lib_dir: libs
chakra: libs/remark-latest.min.js
seal: false
nature:
countIncrementalSlides: false
ratio: '16:9'
---
# Two pretty gaussians
## and a few vertical lines
```{r, echo=FALSE, message=FALSE, warning=FALSE, out.width = '200px'}
library(cowplot)
ggplot(data = data.frame(x = c(-3, 3)), aes(x)) +
stat_function(fun = dnorm, n = 101, args = list(mean = 1, sd = 1)) +
stat_function(fun = dnorm, n = 101, args = list(mean = -1, sd = 1)) +
geom_vline(xintercept = 0, colour="black", linetype = "solid") +
geom_vline(xintercept = c(-1.5,1.5), colour="black", linetype = "longdash") +
ylab("Density") + xlab("\'Internal Signal\'") +
scale_y_continuous(breaks = NULL)
```
Upvotes: 4