Reputation: 55
I am working with a pandas DataFrame that contains some NaNs, for example:
import pandas as pd
import numpy as np
raw_data={'hostname':{1:'server1',2:'server2',3:'server3',4:'server4'},'nic':{1:'eth1',2:'eth1',3:'eth1',4:'eth1'},'vlan':{1:'100',2:np.nan,3:'200',4:np.nan}}
df=pd.DataFrame(raw_data)
df
hostname nic vlan
1 server1 eth1 100
2 server2 eth1 NaN
3 server3 eth1 200
4 server4 eth1 NaN
I then apply some filtering and create a dictionary:
my_dict = df.loc[df['hostname'] == 'server2'].drop('hostname', axis=1).to_dict(orient='records')
my_dict
[{'nic': 'eth1', 'vlan': nan}]
The problem is I want to exclude any keys with a NaN value in the output dictionary, so the output for server2 would be:
my_dict
[{'nic': 'eth1']
I found a possible solution here: make pandas DataFrame to a dict and dropna
from pandas import compat
def to_dict_dropna(data):
return dict((k, v.dropna().to_dict()) for k, v in compat.iteritems(data))
my_dict=to_dict_dropna(df)
my_dict
{'nic': {1: 'eth1', 2: 'eth1', 3: 'eth1', 4: 'eth1'}, 'hostname': {1: 'server1', 2: 'server2', 3: 'server3', 4: 'server4'}, 'vlan': {1: '100', 3: '200'}}
But I don't know how to combine this solution with my other requirements of filtering and using the orient='records' option.
Basically I need to include the above to_dict_dropna function with my existing string of pandas options. Can anyone suggest a solution? Thanks
Upvotes: 4
Views: 3133
Reputation: 863226
Use list comprehension after your solution:
my_dict = (df.loc[df['hostname'] == 'server2']
.drop('hostname', axis=1)
.to_dict(orient='records'))
my_dict = [{k:v for k, v in x.items() if v == v } for x in my_dict]
print (my_dict)
[{'nic': 'eth1'}]
Upvotes: 3