Reputation: 188
I have the following data frame with 345 rows and 237 columns in R:
snp1 snp2 snp3 ... snp237
0 1 2 ... 0
0 1 1 ... 1
1 1 2 ... 2
1 0 0 ... 0
... ... ... ...
2 2 1 ... 0
I want to apply the following function in each column:
D=(number of 0)/(number of rows)
H=(number of 1)/(number of rows)
R=(number of 2)/(number of rows)
p=D+(0.5*H)
q=R+(0.5*H)
Lastly, I want to store the "p" and "q" for each snp in a vector. This function have calculate "p" and "q" for each snp in a single command of R. It is possible?
The output is:
snp1 snp2 snp3 ... snp237
p1 p2 p3 ... ... p237
q1 q2 q3 ... ... q237
Thanks in advance.
Upvotes: 2
Views: 6651
Reputation: 886938
Here is an option with tidyverse
. Create a function (f1
) based on the logic in OP's code to return a list
of length 2, then use that in summarise_all
to apply the function on each of the columns of dataset
library(dplyr)
library(tidyr)
f1 <- function(x) {
H <- 0.5 * mean(x == 1)
list(list(p = mean(x == 0) + H,
q = mean(x == 2) + H))
}
df1 %>%
summarise_all(f1) %>%
unnest
# snp1 snp2 snp3
#1 0.75 0.625 0.375
#2 0.25 0.375 0.625
df1 <- structure(list(snp1 = c(0L, 0L, 1L, 1L), snp2 = c(1L, 1L, 1L,
0L), snp3 = c(2L, 1L, 2L, 0L)), class = "data.frame", row.names = c(NA,
-4L))
Upvotes: 1
Reputation: 32538
#DATA
set.seed(42)
d = data.frame(snp1 = sample(0:2, 10, TRUE),
snp2 = sample(0:2, 10, TRUE),
snp3 = sample(0:2, 10, TRUE))
#Function
foo = function(x){
len = length(x)
D = sum(x == 0)/len
H = sum(x == 1)/len
R = sum(x == 2)/len
p = D + 0.5 * H
q = R + 0.5 * H
return(c(p = p, q = q))
}
#Run foo for each column
sapply(d, foo)
# snp1 snp2 snp3
#p 0.35 0.4 0.35
#q 0.65 0.6 0.65
Upvotes: 3