Reputation: 95
I am trying to develop an auto-encoder for compressing images using Keras. I was able to train it and to compress images, but I am struggling with the decoder part of it. Specifically, given a compressed image, I don't know how to use the model to de-compress it.
This is what I have:
input_layer = keras.layers.Input(shape=(64, 64, 3))
code_layer = build_encoder(input_layer, size_of_code) # add some convolution layers and max-pooling
output_layer = build_decoder(code_layer) # add some convolution layers and up-sampling
autoencoder_model = keras.models.Model(input_layer, output_layer)
encoder_model = keras.models.Model(input_layer, code_layer)
decoder_model = ??
autoencoder_model.compile(optimizer='adam', loss='binary_crossentropy')
using the code above I can train the autoencoder_model
and compress the images using the encoder_model
, but I don't know how to construct the decoder_model
, mainly because I don't know how to insert a new input to the middle of the model.
Upvotes: 0
Views: 144
Reputation: 6034
Like this. Instead of the code_layer, need to define an input layer and build the decoder model with that input.
latent_inputs = keras.layers.Input(shape=(size_of_code))
output_layer = build_decoder(latent_inputs) # add some convolution layers and up-sampling
decoder_model = keras.models.Model(latent_inputs, output_layer)
You can refer this complete VAE example:
https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder.py
Upvotes: 2