Reputation: 1843
Say I have the following data:
colA <- c("SampA", "SampB", "SampC")
colB <- c(21, 20, 30)
colC <- c(15, 14, 12)
colD <- c(10, 22, 18)
df <- data.frame(colA, colB, colC, colD)
df
# colA colB colC colD
# 1 SampA 21 15 10
# 2 SampB 20 14 22
# 3 SampC 30 12 18
I want to get the row means and standard deviations for the values in columns B-D.
I can calculate the rowMeans as follows:
library(dplyr)
df %>% select(., matches("colB|colC|colD")) %>% mutate(rmeans = rowMeans(.))
# colB colC colD rmeans
# 1 21 15 10 15.33333
# 2 20 14 22 18.66667
# 3 30 12 18 20.00000
But when I try to calculate the standard deviation using sd()
, it throws up an error.
df %>% select(., matches("colB|colC|colD")) %>% mutate(rsds = sapply(., sd(.)))
Error in is.data.frame(x) :
(list) object cannot be coerced to type 'double'
So my question is: how do I calculate the standard deviations here?
Edit: I tried sapply()
with sd()
having read the first answer here.
Additional edit: not necessarily looking for a 'tidy' solution (base R also works just fine).
Upvotes: 11
Views: 9975
Reputation: 3073
I'm not sure how old/new dplyr
's c_across
functionality is relative to the prior answers on this page, but here's a solution that is almost directly cut and pasted from the documentation for dplyr::c_across
:
df %>%
rowwise() %>%
mutate(
mean = mean(c_across(colB:colD)),
sd = sd(c_across(colB:colD))
)
# A tibble: 3 x 6
# Rowwise:
colA colB colC colD mean sd
<fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 SampA 21 15 10 15.3 5.51
2 SampB 20 14 22 18.7 4.16
3 SampC 30 12 18 20 9.17
Upvotes: 6
Reputation: 39858
A different dplyr
and tidyr
approach could be:
df %>%
pivot_longer(-1) %>%
group_by(colA) %>%
mutate(rsds = sd(value)) %>%
pivot_wider(names_from = "name",
values_from = "value")
colA rsds colB colC colD
<fct> <dbl> <dbl> <dbl> <dbl>
1 SampA 5.51 21 15 10
2 SampB 4.16 20 14 22
3 SampC 9.17 30 12 18
Or alternatively, using rowwise()
and do()
:
df %>%
rowwise() %>%
do(data.frame(., rsds = sd(unlist(.[2:length(.)]))))
colA colB colC colD rsds
* <fct> <dbl> <dbl> <dbl> <dbl>
1 SampA 21 15 10 5.51
2 SampB 20 14 22 4.16
3 SampC 30 12 18 9.17
Or an option since dplyr 1.0.0
:
df %>%
rowwise() %>%
mutate(rsds = sd(c_across(-1)))
Upvotes: 4
Reputation: 314
I see this post is a bit old, but there are some pretty complicated answers so I thought I'd suggest an easier (and faster) approach.
Calculating means of rows is trivial, just use rowMeans:
rowMeans(df[, c('colB', 'colC', 'colD')])
This is vectorised and very fast.
There is no 'rowSd' function, but it is not hard to write one. Here is my 'rowVars' that I use.
rowVars <- function(x, na.rm=F) {
# Vectorised version of variance filter
rowSums((x - rowMeans(x, na.rm=na.rm))^2, na.rm=na.rm) / (ncol(x) - 1)
}
To calculate sd:
sqrt(rowVars(df[, c('colB', 'colC', 'colD')]))
Again, vectorised and fast which can be important if the input matrix is large.
Upvotes: 3
Reputation: 47310
You can use pmap
, or rowwise
(or group by colA
) along with mutate
:
library(tidyverse)
df %>% mutate(sd = pmap(.[-1], ~sd(c(...)))) # same as transform(df, sd = apply(df[-1],1,sd))
#> colA colB colC colD sd
#> 1 SampA 21 15 10 5.507571
#> 2 SampB 20 14 22 4.163332
#> 3 SampC 30 12 18 9.165151
df %>% rowwise() %>% mutate(sd = sd(c(colB,colC,colD)))
#> Source: local data frame [3 x 5]
#> Groups: <by row>
#>
#> # A tibble: 3 x 5
#> colA colB colC colD sd
#> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 SampA 21 15 10 5.51
#> 2 SampB 20 14 22 4.16
#> 3 SampC 30 12 18 9.17
df %>% group_by(colA) %>% mutate(sd = sd(c(colB,colC,colD)))
#> # A tibble: 3 x 5
#> # Groups: colA [3]
#> colA colB colC colD sd
#> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 SampA 21 15 10 5.51
#> 2 SampB 20 14 22 4.16
#> 3 SampC 30 12 18 9.17
Upvotes: 3
Reputation: 887108
Here is another way using pmap
to get the rowwise mean
and sd
library(purrr)
library(dplyr)
library(tidur_
f1 <- function(x) tibble(Mean = mean(x), SD = sd(x))
df %>%
# select the numeric columns
select_if(is.numeric) %>%
# apply the f1 rowwise to get the mean and sd in transmute
transmute(out = pmap(., ~ f1(c(...)))) %>%
# unnest the list column
unnest %>%
# bind with the original dataset
bind_cols(df, .)
# colA colB colC colD Mean SD
#1 SampA 21 15 10 15.33333 5.507571
#2 SampB 20 14 22 18.66667 4.163332
#3 SampC 30 12 18 20.00000 9.165151
Upvotes: 3
Reputation: 1369
Try this (using), withrowSds
from the matrixStats
package,
library(dplyr)
library(matrixStats)
columns <- c('colB', 'colC', 'colD')
df %>%
mutate(Mean= rowMeans(.[columns]), stdev=rowSds(as.matrix(.[columns])))
Returns
colA colB colC colD Mean stdev
1 SampA 21 15 10 15.33333 5.507571
2 SampB 20 14 22 18.66667 4.163332
3 SampC 30 12 18 20.00000 9.165151
Your data
colA <- c("SampA", "SampB", "SampC")
colB <- c(21, 20, 30)
colC <- c(15, 14, 12)
colD <- c(10, 22, 18)
df <- data.frame(colA, colB, colC, colD)
df
Upvotes: 5
Reputation: 76402
Package magrittr
pipes %>%
are not a good way to process by rows.
Maybe the following is what you want.
df %>%
select(-colA) %>%
t() %>% as.data.frame() %>%
summarise_all(sd)
# V1 V2 V3
#1 5.507571 4.163332 9.165151
Upvotes: 2