Reputation: 310
Wrote a code that direct streams(kafka) word count when file is given(in producer)
code :
from pyspark import SparkConf, SparkContext
from operator import add
import sys
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
## Constants
APP_NAME = "PythonStreamingDirectKafkaWordCount"
##OTHER FUNCTIONS/CLASSES
def main():
sc = SparkContext(appName="PythonStreamingDirectKafkaWordCount")
ssc = StreamingContext(sc, 2)
brokers, topic = sys.argv[1:]
kvs = KafkaUtils.createDirectStream(ssc, [topic], {"metadata.broker.list": brokers})
lines = kvs.map(lambda x: x[1])
counts = lines.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a+b)
counts.pprint()
ssc.start()
ssc.awaitTermination()
if __name__ == "__main__":
main()
Need to convert the input json file to spark Dataframe using Dstream.
Upvotes: 0
Views: 910
Reputation: 128
This should work:
Once you have your variable containing the TransformedDStream kvs
, you can just create a map of DStreams and pass the data to a handler function like this:
data = kvs.map( lambda tuple: tuple[1] )
data.foreachRDD( lambda yourRdd: readMyRddsFromKafkaStream( yourRdd ) )
You should define the handler function that should create the dataframe using your JSON data:
def readMyRddsFromKafkaStream( readRdd ):
# Put RDD into a Dataframe
df = spark.read.json( readRdd )
df.registerTempTable( "temporary_table" )
df = spark.sql( """
SELECT
*
FROM
temporary_table
""" )
df.show()
Hope it helps my friends :)
Upvotes: 1