Reputation: 113
I am trying to manipulate a dttm
variable to adjust for different time zones depending on a numeric id vector. I can manipulate the variable depending on the id without issues using a character vector as the new value. However, when I try to use the date_time()
function to create the new value, each value receives the result of the first item in case_when
.
The id vector is numeric and I have tried to convert the class to a factor and character. The issue pertains.
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(lubridate)
#>
#> Attaching package: 'lubridate'
#> The following object is masked from 'package:base':
#>
#> date
df1 <- tibble(
id = c(1, 2, 3),
date_time = rep(as_datetime("2018-01-01 12:34:56", tz = "Europe/Zurich"), 3)
) %>%
mutate(
date_time2 = case_when(
id == 1 ~ "one",
id == 2 ~ "two",
TRUE ~ "three"
)
)
df2 <- tibble(
id = c(1, 2, 3),
date_time = rep(as_datetime("2018-01-01 12:34:56", tz = "Europe/Zurich"), 3)
) %>%
mutate(
date_time2 = case_when(
id == 1 ~ as_datetime(date_time, tz = "America/New_York"),
id == 2 ~ as_datetime(date_time, tz = "Asia/Kolkata"),
TRUE ~ date_time
)
)
df3 <- tibble(
id = c(1, 2, 3),
date_time = rep(as_datetime("2018-01-01 12:34:56", tz = "Europe/Zurich"), 3)
) %>%
mutate(
date_time2 = case_when(
id == 1 ~ as_datetime(date_time, tz = "Asia/Kolkata"),
id == 2 ~ as_datetime(date_time, tz = "America/New_York"),
TRUE ~ date_time
)
)
df1
#> # A tibble: 3 x 3
#> id date_time date_time2
#> <dbl> <dttm> <chr>
#> 1 1 2018-01-01 12:34:56 one
#> 2 2 2018-01-01 12:34:56 two
#> 3 3 2018-01-01 12:34:56 three
df2
#> # A tibble: 3 x 3
#> id date_time date_time2
#> <dbl> <dttm> <dttm>
#> 1 1 2018-01-01 12:34:56 2018-01-01 06:34:56
#> 2 2 2018-01-01 12:34:56 2018-01-01 06:34:56
#> 3 3 2018-01-01 12:34:56 2018-01-01 06:34:56
df3
#> # A tibble: 3 x 3
#> id date_time date_time2
#> <dbl> <dttm> <dttm>
#> 1 1 2018-01-01 12:34:56 2018-01-01 17:04:56
#> 2 2 2018-01-01 12:34:56 2018-01-01 17:04:56
#> 3 3 2018-01-01 12:34:56 2018-01-01 17:04:56
Created on 2019-03-26 by the reprex package (v0.2.1)
df1
shows what I expect.
In df2
, I expect date_time2
at id
== 2 to show "2018-01-01 17:04:56" and not "2018-01-01 06:34:56".
In df3
, I expect date_time2
at id
== 3 to show "2018-01-01 12:34:56" and not "2018-01-01 17:04:56".
Upvotes: 4
Views: 1172
Reputation: 11981
this seems to a bug (probably of dpylr
, since there had been issues with dates before).
Here is a possible work arround (don't ask me why it works :))
tibble(
id = c(1, 2, 3),
date_time = rep(as_datetime("2018-01-01 12:34:56", tz = "Europe/Zurich"), 3)
) %>%
mutate(
date_time2 = case_when(
id == 1 ~ as_datetime(as.character(as_datetime(date_time, tz = "America/New_York"))),
id == 2 ~ as_datetime(as.character(as_datetime(date_time, tz = "Asia/Kolkata"))),
TRUE ~ as_datetime(as.character(date_time))
)
)
# A tibble: 3 x 3
id date_time date_time2
<dbl> <dttm> <dttm>
1 1 2018-01-01 12:34:56 2018-01-01 06:34:56
2 2 2018-01-01 12:34:56 2018-01-01 17:04:56
3 3 2018-01-01 12:34:56 2018-01-01 12:34:56
Upvotes: 1
Reputation: 39154
We can use force_tzs
from the lubridate
package. We can provide different time zone settings to the tzones
argument. In this case, case_when
is not required if you know the order of time zones.
library(dplyr)
library(lubridate)
df2 %>%
mutate(date_time2 = force_tzs(date_time, tzones = c("America/New_York", "Asia/Kolkata", "UTC")))
# # A tibble: 3 x 3
# id date_time date_time2
# <dbl> <dttm> <dttm>
# 1 1 2018-01-01 12:34:56 2018-01-01 17:34:56
# 2 2 2018-01-01 12:34:56 2018-01-01 07:04:56
# 3 3 2018-01-01 12:34:56 2018-01-01 12:34:56
df3 %>%
mutate(date_time2 = force_tzs(date_time, tzones = c("Asia/Kolkata", "America/New_York", "UTC")))
# # A tibble: 3 x 3
# id date_time date_time2
# <dbl> <dttm> <dttm>
# 1 1 2018-01-01 12:34:56 2018-01-01 07:04:56
# 2 2 2018-01-01 12:34:56 2018-01-01 17:34:56
# 3 3 2018-01-01 12:34:56 2018-01-01 12:34:56
Upvotes: 1