Reputation: 374
I have a table contains keyword and its occurrence on each year, but if it doesn't occur in some years, those years are missing.
But I need to pad those years with zero now, how can I do it with Pandas dataframe?
My data is like the table below, each keyword should be padded zero up to 13 years from 2003 to 2015.
+---------+------+-------+ | keyword | year | count | +---------+------+-------+ | a | 2003 | 1 | | a | 2004 | 2 | | b | 2003 | 1 | | b | 2005 | 2 | +---------+------+-------+
Desired result:
+---------+------+-------+ | keyword | year | count | +---------+------+-------+ | a | 2003 | 1 | | a | 2004 | 2 | | a | 2005 | 0 | | a | 2006 | 0 | | a | 2007 | 0 | | a | 2008 | 0 | | a | 2009 | 0 | | a | 2010 | 0 | | a | 2011 | 0 | | a | 2012 | 0 | | a | 2013 | 0 | | a | 2014 | 0 | | a | 2015 | 0 | | b | 2003 | 1 | | b | 2004 | 0 | | b | 2005 | 2 | | b | 2006 | 0 | | ... | ... | ... | +---------+------+-------+
How can I do this? I have searched StackOverflow and only find the answers on non-repeating date, but here my years are repeating.
Upvotes: 1
Views: 877
Reputation: 862591
You can create new MultiIndex
by MultiIndex.from_product
, then convert columns to MultiIndex
by DataFrame.set_index
and DataFrame.reindex
:
mux = pd.MultiIndex.from_product([df['keyword'].unique(),
np.arange(2003, 2016)], names=['keyword','year'])
df = df.set_index(['keyword','year']).reindex(mux, fill_value=0).reset_index()
print (df)
keyword year count
0 a 2003 1
1 a 2004 2
2 a 2005 0
3 a 2006 0
4 a 2007 0
5 a 2008 0
6 a 2009 0
7 a 2010 0
8 a 2011 0
9 a 2012 0
10 a 2013 0
11 a 2014 0
12 a 2015 0
13 b 2003 1
14 b 2004 0
15 b 2005 2
16 b 2006 0
17 b 2007 0
18 b 2008 0
19 b 2009 0
20 b 2010 0
21 b 2011 0
22 b 2012 0
23 b 2013 0
24 b 2014 0
25 b 2015 0
Another solution is create new DataFrame
by itertools.product
and DataFrame.merge
with left join, last repalce missing values by DataFrame.fillna
:
from itertools import product
df1 = pd.DataFrame(list(product(df['keyword'].unique(),
np.arange(2003, 2016))), columns=['keyword','year'])
df = df1.merge(df, how='left').fillna({'count':0}, downcast='int')
Upvotes: 3