Reputation: 311
The error message is as follows:
RuntimeError Traceback (most recent call last)
<ipython-input-24-06e96beb03a5> in <module>()
11
12 x_test = np.array(test_features)
---> 13 x_test_cuda = torch.tensor(x_test, dtype=torch.float).cuda()
14 test = torch.utils.data.TensorDataset(x_test_cuda)
15 test_loader = torch.utils.data.DataLoader(test, batch_size=batch_size, shuffle=False)
/usr/local/lib/python3.6/dist-packages/torch/cuda/__init__.py in _lazy_init()
160 class CudaError(RuntimeError):
161 def __init__(self, code):
--> 162 msg = cudart().cudaGetErrorString(code).decode('utf-8')
163 super(CudaError, self).__init__('{0} ({1})'.format(msg, code))
164
RuntimeError: cuda runtime error (38) : no CUDA-capable device is detected at /pytorch/aten/src/THC/THCGeneral.cpp:51
Upvotes: 17
Views: 28255
Reputation: 172
Sometimes even after doing the below stop, this error may occur. The reason behind that is that you might be using Colab for long computational processes and it doesn't prefer you using that way.
You can check out the reasons and Google's explanations in this link: https://research.google.com/colaboratory/faq.html#usage-limits
Upvotes: -2
Reputation: 681
Click on Runtime and select Change runtime type.
Now in Hardware Acceleration, select GPU and hit Save.
Upvotes: 62