Reputation: 61
I have measurements for Power related to different sensors i.e A1_Pin, A2_Pin and so on. These measurements are recorded in file as columns. The data is uniquely recorded with timestamps.
df1 = pd.DataFrame({'DateTime': ['12/12/2019', '12/13/2019', '12/14/2019',
'12/15/2019', '12/16/2019'],
'A1_Pin': [2, 8, 8, 3, 9],
'A2_Pin': [1, 2, 3, 4, 5],
'A3_Pin': [85, 36, 78, 32, 75]})
I want to reform the table so that each row corresponds to one sensor. The last column indicates the sensor ID to which the row data belongs to.
The final table should look like:
df2 = pd.DataFrame({'DateTime': ['12/12/2019', '12/12/2019', '12/12/2019',
'12/13/2019', '12/13/2019','12/13/2019', '12/14/2019', '12/14/2019',
'12/14/2019', '12/15/2019','12/15/2019', '12/15/2019', '12/16/2019',
'12/16/2019', '12/16/2019'],
'Power': [2, 1, 85,8, 2, 36, 8,3,78, 3, 4, 32, 9, 5, 75],
'ModID': ['A1_PiN','A2_PiN','A3_PiN','A1_PiN','A2_PiN','A3_PiN',
'A1_PiN','A2_PiN','A3_PiN','A1_PiN','A2_PiN','A3_PiN',
'A1_PiN','A2_PiN','A3_PiN']})
I have tried Groupby, Melt, Reshape, Stack and loops but could not do that. If anyone could help? Thanks
Upvotes: 1
Views: 25
Reputation: 29635
When you tried stack
, you were on one good track. you need to set_index
first and reset_index
after such as:
df2 = df1.set_index('DateTime').stack().reset_index(name='Power')\
.rename(columns={'level_1':'ModID'}) #to fit the names your expected output
And you get:
print (df2)
DateTime ModID Power
0 12/12/2019 A1_Pin 2
1 12/12/2019 A2_Pin 1
2 12/12/2019 A3_Pin 85
3 12/13/2019 A1_Pin 8
4 12/13/2019 A2_Pin 2
5 12/13/2019 A3_Pin 36
6 12/14/2019 A1_Pin 8
7 12/14/2019 A2_Pin 3
8 12/14/2019 A3_Pin 78
9 12/15/2019 A1_Pin 3
10 12/15/2019 A2_Pin 4
11 12/15/2019 A3_Pin 32
12 12/16/2019 A1_Pin 9
13 12/16/2019 A2_Pin 5
14 12/16/2019 A3_Pin 75
Upvotes: 1
Reputation: 1422
I'd try something like this:
df1.set_index('DateTime').unstack().reset_index()
Upvotes: 1