Reputation: 17557
I am trying to plot normal distribution curve using Python. First I did it manually by using the normal probability density function and then I found there's an exiting function pdf
in scipy under stats module. However, the results I get are quite different.
Below is the example that I tried:
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
mean = 5
std_dev = 2
num_dist = 50
# Draw random samples from a normal (Gaussion) distribution
normalDist_dataset = np.random.normal(mean, std_dev, num_dist)
# Sort these values.
normalDist_dataset = sorted(normalDist_dataset)
# Create the bins and histogram
plt.figure(figsize=(15,7))
count, bins, ignored = plt.hist(normalDist_dataset, num_dist, density=True)
new_mean = np.mean(normalDist_dataset)
new_std = np.std(normalDist_dataset)
normal_curve1 = stats.norm.pdf(normalDist_dataset, new_mean, new_std)
normal_curve2 = (1/(new_std *np.sqrt(2*np.pi))) * (np.exp(-(bins - new_mean)**2 / (2 * new_std**2)))
plt.plot(normalDist_dataset, normal_curve1, linewidth=4, linestyle='dashed')
plt.plot(bins, normal_curve2, linewidth=4, color='y')
The result shows how the two curves I get are very different from each other.
My guess is that it is has something to do with bins
or pdf
behaves differently than usual formula. I have used the same and new mean and standard deviation for both the plots. So, how do I change my code to match what stats.norm.pdf
is doing?
I don't know yet which curve is correct.
Upvotes: 0
Views: 180
Reputation: 57033
Function plot
simply connects the dots with line segments. Your bins do not have enough dots to show a smooth curve. Possible solution:
....
normal_curve1 = stats.norm.pdf(normalDist_dataset, new_mean, new_std)
bins = normalDist_dataset # Add this line
normal_curve2 = (1/(new_std *np.sqrt(2*np.pi))) * (np.exp(-(bins - new_mean)**2 / (2 * new_std**2)))
....
Upvotes: 2