Reputation: 117
how to get the index of pandas series when the value incremented by one?
Ex. The input is
A
0 0
1 1
2 1
3 1
4 2
5 2
6 3
7 4
8 4
the output should be: [0, 1, 4, 6, 7]
Upvotes: 1
Views: 417
Reputation: 17154
This makes sure the second row is incremented by one (not by two or anything else!)
df[ ((df.A.shift(-1) - df.A) == 1.0)].index.values
output is numpy array:
array([2, 5])
Example:
# * * here value increase by 1
# 0 1 2 3 4 5 6 7
df = pd.DataFrame({ 'A' : [1, 1, 1, 2, 8, 3, 4, 4]})
df[ ((df.A.shift(-1) - df.A) == 1.0)].index.values
array([2, 5])
Upvotes: 0
Reputation: 402493
You can use Series.duplicated
and access the index, should be slightly faster.
df.index[~df.A.duplicated()]
# Int64Index([0, 1, 4, 6, 7], dtype='int64')
If you really want a list, you can do this,
df.index[~df.A.duplicated()].tolist()
# [0, 1, 4, 6, 7]
Note that duplicated
(and drop_duplicates
) will only work if your Series does not have any decrements.
Alternatively, you can use diff
here, and index into df.index
, similar to the previous solution:
np.insert(df.index[df.A.diff().gt(0)], 0, 0)
# Int64Index([0, 1, 4, 6, 7], dtype='int64')
Upvotes: 2
Reputation: 323236
It is drop_duplicates
df.drop_duplicates('A').index.tolist()
[0, 1, 4, 6, 7]
Upvotes: 2