Reputation: 147
I have a spark dataframe with 3 columns that indicate positions of atoms i-e Position X, Y & Z. Now to find the distance between every 2 atoms for which I need to apply distance formula. The distance formula is d= sqrt((x2−x1)^2+(y2−y1)^2+(z2-z1)^2)
so to apply the above formula I need to subtract every row in x from every other row in x, every row in y from every other row in y and so as. and then apply the above formula for every two atoms.
I have tried to make a User-defined function(udf), but I am unable to pass the whole spark dataframe to it, I can only pass each column separately not the whole dataframe. Due to which I couldn't iterate over the whole dataframe rather I have to apply for loops on each column. The below piece of code show the iteration I am doing for Position_X only.
@udf
def Distance(Position_X,Position_Y, Position_Z):
try:
for x,z in enumerate(Position_X) :
firstAtom = z
for y, a in enumerate(Position_X):
if (x!=y):
diff = firstAtom - a
return diff
except:
return None
newDF1 = atomsDF.withColumn("Distance", Distance(*atomsDF.columns))
My atomDF spark dataframe look like this, each row shows the x,y,z coordinates of one atom in space. Right now we are taking only 10 atoms.
Position_X|Position_Y|Position_Z|
+----------+----------+----------+
| 27.545| 6.743| 12.111|
| 27.708| 7.543| 13.332|
| 27.640| 9.039| 12.970|
| 26.991| 9.793| 13.693|
| 29.016| 7.166| 14.106|
| 29.286| 8.104| 15.273|
| 28.977| 5.725| 14.603|
| 28.267| 9.456| 11.844|
| 28.290| 10.849| 11.372|
| 26.869| 11.393| 11.161|
+----------+----------+----------+
How can I solve the above problem in pyspark i-e. How to subtract each row from every other row? How to pass a whole spark dataframe to udf not its columns? And how to avoid using soo many for loops?
The expected output for every two atoms (rows) would be a distance between two rows calculated with the above distance formula. I don't need to retain that distance because I will be using it another formula of Potential energy. Or if it can be retained in a separate dataframe I don't mind.
Upvotes: 0
Views: 2383
Reputation: 15258
I you want to do compare 2 by 2 the atoms (the lines) you need to perform a cross join ... which is not recommended.
You can use the function monotonically_increasing_id
to generate an id for each line.
from pyspark.sql import functions as F
df = df.withColumn("id", F.monotonically_increasing_id())
Then you crossJoin your dataframe with itself and you filter with line where "id_1 > id_2"
df_1 = df.select(*(F.col(col).alias("{}_1".format(col)) for col in df.columns))
df_2 = df.select(*(F.col(col).alias("{}_2".format(col)) for col in df.columns))
df_3 = df_1.crossJoin(df_2).where("id_1 > id_2")
df_3 contains the 45 lines you need. You just have to apply your formula :
df_4 = df_3.withColumn(
"distance",
F.sqrt(
F.pow(F.col("Position_X_1") - F.col("Position_X_2"), F.lit(2))
+ F.pow(F.col("Position_Y_1") - F.col("Position_Y_2"), F.lit(2))
+ F.pow(F.col("Position_Z_1") - F.col("Position_Z_2"), F.lit(2))
)
)
df_4.orderBy('id_2', 'id_1').show()
+------------+------------+------------+----------+------------+------------+------------+----+------------------+
|Position_X_1|Position_Y_1|Position_Z_1| id_1|Position_X_2|Position_Y_2|Position_Z_2|id_2| distance|
+------------+------------+------------+----------+------------+------------+------------+----+------------------+
| 27.708| 7.543| 13.332| 1| 27.545| 6.743| 12.111| 0|1.4688124454810418|
| 27.64| 9.039| 12.97| 2| 27.545| 6.743| 12.111| 0| 2.453267616873462|
| 26.991| 9.793| 13.693| 3| 27.545| 6.743| 12.111| 0| 3.480249991020759|
| 29.016| 7.166| 14.106| 4| 27.545| 6.743| 12.111| 0|2.5145168522004355|
| 29.286| 8.104| 15.273|8589934592| 27.545| 6.743| 12.111| 0|3.8576736513085175|
| 28.977| 5.725| 14.603|8589934593| 27.545| 6.743| 12.111| 0| 3.049100195139542|
| 28.267| 9.456| 11.844|8589934594| 27.545| 6.743| 12.111| 0|2.8200960976534106|
| 28.29| 10.849| 11.372|8589934595| 27.545| 6.743| 12.111| 0| 4.237969089080287|
| 26.869| 11.393| 11.161|8589934596| 27.545| 6.743| 12.111| 0| 4.793952023122468|
| 27.64| 9.039| 12.97| 2| 27.708| 7.543| 13.332| 1|1.5406764747993003|
| 26.991| 9.793| 13.693| 3| 27.708| 7.543| 13.332| 1|2.3889139791964036|
| 29.016| 7.166| 14.106| 4| 27.708| 7.543| 13.332| 1|1.5659083625806454|
| 29.286| 8.104| 15.273|8589934592| 27.708| 7.543| 13.332| 1|2.5636470115833037|
| 28.977| 5.725| 14.603|8589934593| 27.708| 7.543| 13.332| 1|2.5555676473143896|
| 28.267| 9.456| 11.844|8589934594| 27.708| 7.543| 13.332| 1| 2.48720606303539|
| 28.29| 10.849| 11.372|8589934595| 27.708| 7.543| 13.332| 1| 3.88715319996524|
| 26.869| 11.393| 11.161|8589934596| 27.708| 7.543| 13.332| 1| 4.498851186691999|
| 26.991| 9.793| 13.693| 3| 27.64| 9.039| 12.97| 2|1.2298154333069653|
| 29.016| 7.166| 14.106| 4| 27.64| 9.039| 12.97| 2|2.5868902180030737|
| 29.286| 8.104| 15.273|8589934592| 27.64| 9.039| 12.97| 2|2.9811658793163454|
+------------+------------+------------+----------+------------+------------+------------+----+------------------+
only showing top 20 rows
It is working for few data but with a lot, the crossJoin
will destroy the performances.
Upvotes: 2