Reputation: 102
I am trying to count the number of non-alphanumeric characters for each string in a vector of 100,000 strings. I am finding my current implementation to be slower that I would like.
My current implementation uses purrr::map()
to map a custom function that uses the stringr
package over each string in the vector.
library(dplyr)
library(stringr)
library(purrr)
# custom function that accepts string input and counts the number
# of non-alphanum characters
count_non_alnum <- function(x) {
stringr::str_detect(x, "[^[:alnum:] ]") %>% sum()
}
# character vector of length 100K
vec <- rep("Hello. World.", 100000)
# tokenize individual characters for each string
vec_tokens <- purrr::map(vec, function(x) {
stringr::str_split(x, "") %>% unlist()
})
# count non-alphanum characters
purrr::map(vec_tokens, count_non_alnum)
# Time difference of 1.048214 mins
sessionInfo()
# R version 3.4.3 (2017-11-30)
# Platform: x86_64-w64-mingw32/x64 (64-bit)
# Running under: Windows 7 x64 (build 7601) Service Pack 1
My simulations consistently require about 1 minute to complete. I don't have much of a basis for expectation, but I am hoping there is a faster alternative. I am open to alternative R packages or interfaces (e.g. reticulate, Rcpp).
Upvotes: 2
Views: 193
Reputation: 76470
The base R functions are much faster. Here is a sum/grepl
solution and 4 different ways of calling the two functions.
library(microbenchmark)
library(ggplot2)
library(dplyr)
library(stringr)
library(purrr)
# custom function that accepts string input and counts the number
# of non-alphanum characters
count_non_alnum <- function(x) {
stringr::str_detect(x, "[^[:alnum:] ]") %>% sum()
}
count_non_alnum2 <- function(x) {
sum(grepl("[^[:alnum:] ]", x))
}
# character vector of length 100K
vec <- rep("Hello. World.", 100)
# tokenize individual characters for each string
vec_tokens <- purrr::map(vec, function(x) {
stringr::str_split(x, "") %>% unlist()
})
# count non-alphanum characters
mb <- microbenchmark(
Danny_purrr = purrr::map(vec_tokens, count_non_alnum),
Rui_purrr = purrr::map(vec_tokens, count_non_alnum2),
Danny_base = sapply(vec_tokens, count_non_alnum),
Rui_base = sapply(vec_tokens, count_non_alnum2),
unit = "relative"
)
mb
#Unit: relative
# expr min lq mean median uq max neval cld
# Danny_purrr 58.508234 56.440147 52.854162 53.890724 53.464640 25.855456 100 c
# Rui_purrr 1.026362 1.021998 1.011265 1.025648 1.025087 1.558001 100 a
# Danny_base 58.643098 56.398330 52.491478 53.857666 52.821759 27.981780 100 b
# Rui_base 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100 a
autoplot(mb)
Upvotes: 2