Reputation: 21
I am attempting to create a dataframe from fasta files which contain a header (the name of the contig) and a DNA sequence. In the first column of my dataframe I would like to have the name of the file, on the second line I would like to have the contig name, and in the third column I would like to have the length of the contig sequence (number of basepairs - I don't have to count this- it's also in the contig ID so I could split that later).
Within the jupyter notebook (embedded in a bash shell) I have tried the following:
files = []
identifiers = []
# r=root, d=directories, f = files
for r, d, f in os.walk(path):
for file in f:
if '.fasta' in file:
files.append(os.path.join(file)) #this grabs my file names and appends them to files - works
open(file, "r")
for line in file:
identifiers.append(line) # this would grab the identifier - found on the first line of the file
I would expect this to fill files=[] with filename1, filename2, filename3 and identifiers=[] with >contig_id_1_length=309, >contig_id_2_length=400, >contig_id_3_length=40009 etc. Then I could split the contig ids with split() to retrieve the length of the contigs and add all 3 series to a pd dataframe.
Upvotes: 2
Views: 142
Reputation: 7045
So I have generated some dummy data:
f1.fasta
>ctg_1_length=147
TCGTGGTCACCGATCGAAGATCCAATATCCGGAGATCGTCTACCTGTATGTAGTAAGCGCAAGGCCCGTTTACTGCGTCACCCTAGCAGAACGCCGACCAGGTCTCCTATAGTCACCGGCCTCGCACCTTTAAGTATGTATAGACGG
>ctg_2_length=141
GCTTGGGTGGGAACGGCTCGTGGCGGAGTACCCGAGAGTGGTTTCGGTATCTGGTGTCGTGCCAGGTTTAATTGAAAATTCAAGATTTTAAGTATCGCTTCAGATAGATTACTTACTGCGAGTGCCTTGTCACAGGGCGGG
>ctg_3_length=124
CCTTCGACCATGGATATCCTAACTCAGCCCCAGCCAGCTAACTCTGGACCAACCGAGAGCGTCTTTCTTTGATGTAACTAAGCTGGCGTTGGGCCCCCCGGTGTTCTAACGTATCTGAAGCCAA
>ctg_4_length=124
CGCGAACTTATCTTGTTATCGAAGATAGCTGTAGGAACTCGGCCAGCCCGACTATTTCGTTCGCCGCTTTCCCCTGGCTCTAGATGCAGTCCACAGATTCTTCTCAGGTGATGCGAGGAACAGG
>ctg_5_length=137
CCAACCCCTGCTCTAGGCTTACCGCCAAGCTACTCAATGGTTCGGTCGATGCAGAACGTATTACTATGTTCTCGACTCTCTGAAACCGCTGTCTACGAGGCAAGCCCCAAAATAGATGGAGGGGCCTCGCCTGTGGG
f2.fasta
>ctg_1_length=106
TCGATATTGGTTAAGGCGCGCAGCAATTTGGGAGTTGACGCACAACGTTCGGATGCGAGAGTGAGCATACGGTAGAGCCGAACCCACAATGGGTAACCGAACGACA
>ctg_2_length=60
CTACGATCTGAAATCCACTTCACGTGATCCGCGAGATGGGTTATTCGGTTTTTAGAACAT
>ctg_3_length=145
ACACTTATATCCACGATTGAGTGGCTCATCGGTGTGACACTCTGACGTCGTTTGAATACCTGCCCGGACAGGGTTTTCGTCAAACTCCCCGCGACGGTTCGTAACTGTCTGTACCCGTCGGCTGGACGAAGTTTAGATATAAAAC
>ctg_4_length=88
GAGCCGCTACATTACTTAATAACTTACAAAGGGCGAAGTCACATATTTCGTAAGAAGCATTCCTCGTCAGAATCCATTCCAAACCCCA
>ctg_5_length=87
CTACGCTAAGCTGCGGTACGACGGGGATATTACACGTACTAATCCATACCAACTAAATGGCATGTTGTTGAAGATAGCACTTTGAGG
The following code is a "pure" python approach, it doesn't require any other modules (except pandas, for the DataFrame):
import pandas as pd
from pathlib import Path
files = [x for x in Path().iterdir() if x.suffix == ".fasta"]
# [PosixPath('f1.fasta'), PosixPath('f2.fasta')]
read_list = []
for file in files:
with file.open("r") as handle:
for line in handle:
if line.startswith(">"):
line = line.strip()
read_list.append((file.name, # Change to file.resolve() for the absolute path
*line[1:].split("=")
))
df = pd.DataFrame(read_list, columns=["file", "ctg", "len"])
# file ctg len
# 0 f1.fasta ctg_1_length 147
# 1 f1.fasta ctg_2_length 141
# 2 f1.fasta ctg_3_length 124
# 3 f1.fasta ctg_4_length 124
# 4 f1.fasta ctg_5_length 137
# 5 f2.fasta ctg_1_length 106
# 6 f2.fasta ctg_2_length 60
# 7 f2.fasta ctg_3_length 145
# 8 f2.fasta ctg_4_length 88
# 9 f2.fasta ctg_5_length 87
Alternatively, you could use SeqIO
from biopython
:
import pandas as pd
from pathlib import Path
from Bio import SeqIO
files = [x for x in Path().iterdir() if x.suffix == ".fasta"]
read_list = []
for file in files:
with file.open("r") as handle:
for record in SeqIO.parse(handle, "fasta"):
read_list.append((file.name, record.id, len(record.seq)))
df = pd.DataFrame(read_list, columns=["file", "ctg", "len"])
# file ctg len
# 0 f1.fasta ctg_1_length=147 147
# 1 f1.fasta ctg_2_length=141 141
# 2 f1.fasta ctg_3_length=124 124
# 3 f1.fasta ctg_4_length=124 124
# 4 f1.fasta ctg_5_length=137 137
# 5 f2.fasta ctg_1_length=106 106
# 6 f2.fasta ctg_2_length=60 60
# 7 f2.fasta ctg_3_length=145 145
# 8 f2.fasta ctg_4_length=88 88
# 9 f2.fasta ctg_5_length=87 87
These both work on the same principle of building a list
(read_list
) of tuples
. As each tuple acts as a record pandas
can turn them into a DataFrame very easily.
Upvotes: 1