Reputation: 9900
Basic idea: I have an array of images images=np.array([10, 28, 28, 3])
. So 10 images 28x28 pixels with 3 colour channels. I want to stitch them together in one long line: single_image.shape # [280, 28, 3]
. What would be the best numpy based function for that?
More generally: is there a function along the lines of stitch(array, source_axis=0, target_axis=1)
that would transform an array A.shape # [a0, a1, source_axis, a4, target_axis, a6]
into a shape B.shape # [a0, a1, a4, target_axis*source_axis, a6]
by concatenating subarrays A[:,:,i,:,:,:]
along axis=target_axis
Upvotes: 1
Views: 446
Reputation: 221584
You can set it up with a single moveaxis
+ reshape
combo -
def merge_axis(array, source_axis=0, target_axis=1):
shp = a.shape
L = shp[source_axis]*shp[target_axis] # merged axis len
out_shp = np.insert(np.delete(shp,(source_axis,target_axis)),target_axis-1,L)
return np.moveaxis(a,source_axis,target_axis-1).reshape(out_shp)
Alternatively, out_shp
could be setup with array manipulations and might be easier to follow, like so -
shp = np.array(a.shape)
shp[target_axis] *= shp[source_axis]
out_shp = np.delete(shp,source_axis)
If source
and target
axes are adjacent ones, we can skip moveaxis
and simply reshape and the additional benefit would be that the output would be a view into the input and hence virtually free on runtime. So, we will introduce a If-conditional to check and modify our implementations to something like these -
def merge_axis_v1(array, source_axis=0, target_axis=1):
shp = a.shape
L = shp[source_axis]*shp[target_axis] # merged_axis_len
out_shp = np.insert(np.delete(shp,(source_axis,target_axis)),target_axis-1,L)
if target_axis==source_axis+1:
return a.reshape(out_shp)
else:
return np.moveaxis(a,source_axis,target_axis-1).reshape(out_shp)
def merge_axis_v2(array, source_axis=0, target_axis=1):
shp = np.array(a.shape)
shp[target_axis] *= shp[source_axis]
out_shp = np.delete(shp,source_axis)
if target_axis==source_axis+1:
return a.reshape(out_shp)
else:
return np.moveaxis(a,source_axis,target_axis-1).reshape(out_shp)
Verify views
-
In [156]: a = np.random.rand(10,10,10,10,10)
In [157]: np.shares_memory(merge_axis_v1(a, source_axis=0, target_axis=1),a)
Out[157]: True
Upvotes: 2
Reputation: 9900
Here is my take:
def merge_axis(array, source_axis=0, target_axis=1):
array = np.moveaxis(array, source_axis, 0)
array = np.moveaxis(array, target_axis, 1)
array = np.concatenate(array)
array = np.moveaxis(array, 0, target_axis-1)
return array
Upvotes: 1