Reputation: 1739
I have a pandas dataframe who just has numeric columns, and I am trying to create a separate histogram for all the features
ind group people value value_50
1 1 5 100 1
1 2 2 90 1
2 1 10 80 1
2 2 20 40 0
3 1 7 10 0
3 2 23 30 0
but in my real life data there are 50+ columns, how can I create a separate plot for all of them
I have tried
df.plot.hist( subplots = True, grid = True)
It gave me an overlapping unclear plot.
how can I arrange them using pandas subplots = True. Below example can help me to get graphs in (2,2) grid for four columns. But its a long method for all 50 columns
fig, [(ax1,ax2),(ax3,ax4)] = plt.subplots(2,2, figsize = (20,10))
Upvotes: 29
Views: 86528
Reputation: 2552
Using pandas.DataFrame
I would suggest using pandas.DataFrame.apply
. With a custom function, in this example plot()
, you can print and save each figure seperately.
def plot(col):
fig, ax = plt.subplots()
ax.plot(col)
plt.show()
df.apply(plot)
Upvotes: 4
Reputation: 23783
While not asked for in the question I thought I'd add that using the x
parameter to plot would allow you to specify a column for the x axis data.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
df = pd.DataFrame(np.random.rand(7,20),columns=list('abcdefghijklmnopqrst'))
df.plot(x='a',subplots=True, layout=(4,5))
plt.tight_layout()
plt.show()
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.html
Upvotes: 0
Reputation: 538
An alternative for this task can be using the "hist" method with hyperparameter "layout". Example using part of the code provided by @ImportanceOfBeingErnest:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
df = pd.DataFrame(np.random.rand(7,20))
df.hist(layout=(5,4), figsize=(15,10))
plt.show()
Upvotes: 11
Reputation: 682
If you want to plot them separately (which is why I ended up here), you can use
for i in df.columns:
plt.figure()
plt.hist(df[i])
Upvotes: 15
Reputation: 339765
Pandas subplots=True
will arange the axes in a single column.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
df = pd.DataFrame(np.random.rand(7,20))
df.plot(subplots=True)
plt.tight_layout()
plt.show()
Here, tight_layout
isn't applied, because the figure is too small to arange the axes nicely. One can use a bigger figure (figsize=(...)
) though.
In order to have the axes on a grid, one can use the layout
parameter, e.g.
df.plot(subplots=True, layout=(4,5))
The same can be achieved if creating the axes via plt.subplots()
fig, axes = plt.subplots(nrows=4, ncols=5)
df.plot(subplots=True, ax=axes)
Upvotes: 75