Reputation: 757
I'm building a dataset and am looking to be able to add a week count to a dataset starting from the first date, ending on the last. I'm using it to summarize a much larger dataset, which I'd like summarized by week eventually.
Using this sample:
library(dplyr)
df <- tibble(Date = seq(as.Date("1944/06/1"), as.Date("1944/09/1"), "days"),
Week = nrow/7)
# A tibble: 93 x 2
Date Week
<date> <dbl>
1 1944-06-01 0.143
2 1944-06-02 0.286
3 1944-06-03 0.429
4 1944-06-04 0.571
5 1944-06-05 0.714
6 1944-06-06 0.857
7 1944-06-07 1
8 1944-06-08 1.14
9 1944-06-09 1.29
10 1944-06-10 1.43
# … with 83 more rows
Which definitely isn't right. Also, my real dataset isn't structured sequentially, there are many days missing between weeks so a straight sequential count won't work.
An ideal end result is an additional "week" column, based upon the actual dates (rather than hard-coded with a seq_along() type of result)
Upvotes: 0
Views: 277
Reputation: 2959
Similar solution to Ronak's but with lubridate
:
library(lubridate)
(df <- tibble(Date = seq(as.Date("1944/06/1"), as.Date("1944/09/1"), "days"),
week = interval(min(Date), Date) %>%
as.duration() %>%
as.numeric("weeks") %>%
floor() + 1))
Upvotes: 1
Reputation: 388982
You could subtract all the Date
values with the first Date
and calculate the difference using difftime
in "weeks", floor
all the values and add 1 to start the counter from 1.
df$week <- floor(as.numeric(difftime(df$Date, df$Date[1], units = "weeks"))) + 1
df
# A tibble: 93 x 2
# Date week
# <date> <dbl>
# 1 1944-06-01 1
# 2 1944-06-02 1
# 3 1944-06-03 1
# 4 1944-06-04 1
# 5 1944-06-05 1
# 6 1944-06-06 1
# 7 1944-06-07 1
# 8 1944-06-08 2
# 9 1944-06-09 2
#10 1944-06-10 2
# … with 83 more rows
To use this in your dplyr
pipe you could do
library(dplyr)
df %>%
mutate(week = floor(as.numeric(difftime(Date, first(Date), units = "weeks"))) + 1)
data
df <- tibble::tibble(Date = seq(as.Date("1944/06/1"), as.Date("1944/09/1"), "days"))
Upvotes: 1