user1848018
user1848018

Reputation: 1106

Join multiple columns from one data frame to single column from another without multiple join operation, in pyspark

I am trying to match multiple columns from one data frame (df) to to a multiple language dictionary (df_label) and extract the the corresponding labels for each column.
Note: This is not a duplcate question of Join multiple columns from one table to single column from another table

The following is an example of df and df_label dataframes and the desired output

  df                df_label                       output
+---+---+       +---+-----+----+        +---+---+------+------+------+
|  s|  o|       |  e| name|lang|        |  s|  o|s_name|o_name|  lang|
+---+---+       +---+-----+----+        +---+---+------+------+------+
| s1| o1|       | s1|s1_en|  en|        | s2| o1| s2_fr| o1_fr|    fr|
| s1| o3|       | s1|s1_fr|  fr|        | s1| o1| s1_fr| o1_fr|    fr|
| s2| o1|       | s2|s2_fr|  fr|        | s1| o1| s1_en| o1_en|    en|
| s2| o2|       | o1|o1_fr|  fr|        | s2| o2| s2_fr| o2_fr|    fr|
+---+---+       | o1|o1_en|  en|        +---+---+------+------+------+
                | o2|o2_fr|  fr|
                +---+-----+----+

In other words I want match both columns [s,o] from df with column e from df_label and find their corresponding labels in different languages as shown above.

The multi-lang dictionary( df_label) is huge and columns [s,o] have many duplicates, so two join operations is highly inefficient.

Is there any way that could be achieved without multiple joins?

FYI, this is what I did using multiple joins but I really don't like it.

df = spark.createDataFrame([('s1','o1'),('s1','o3'),('s2','o1'),('s2','o2')]).toDF('s','o')
df_label = spark.createDataFrame([('s1','s1_en','en'),('s1','s1_fr','fr'),('s2','s2_fr','fr'),('o1','o1_fr','fr'),('o1','o1_en','en'),('o2','o2_fr','fr')]).toDF('e','name','lang')
df = df.join(df_label,col('s')==col('e')).drop('e').withColumnRenamed('name','s_name').withColumnRenamed('lang','s_lang')
df = df.join(df_label,col('o')==col('e')).drop('e').withColumnRenamed('name','o_name').select('s','o','s_name','o_name','s_lang','o','o_name','lang').withColumnRenamed('lang','o_lang').filter(col('o_lang')==col('s_lang')).drop('s_lang')   

Upvotes: 2

Views: 138

Answers (2)

user1848018
user1848018

Reputation: 1106

Building on what gaw suggested, this is my proposed solution
The approach was to use only one join but then use a conditional aggregate collect_list to check whether the match was for s column or o column.

df = = spark.createDataFrame([('s1','o1'),('s1','o3'),('s2','o1'),('s2','o2')]).toDF('s','o')
df_label = spark.createDataFrame([('s1','s1_en','en'),('s1','s1_fr','fr'),('s2','s2_fr','fr'),('o1','o1_fr','fr'),('o1','o1_en','en'),('o2','o2_fr','fr')]).toDF('e','name','lang')

df.join(df_label,(col('e')== col('s')) | (col('e') == col('o'))) \
.groupBy(['s','o','lang']) \
.agg(collect_list(when(col('e')==col('s'),col('name'))).alias('s_name')\
,collect_list(when(col('e')==col('o'),col('name'))).alias('o_name')) \
.withColumn('s_name',explode('s_name')).withColumn('o_name',explode('o_name')).show()

    +---+---+----+------+------+
    |  s|  o|lang|s_name|o_name|
    +---+---+----+------+------+
    | s2| o2|  fr| s2_fr| o2_fr|
    | s1| o1|  en| s1_en| o1_en|
    | s1| o1|  fr| s1_fr| o1_fr|
    | s2| o1|  fr| s2_fr| o1_fr|
    +---+---+----+------+------+

Upvotes: 2

gaw
gaw

Reputation: 1960

I created a way which works with only one join, but since it uses additional (expensive) operations like explode etc. I am not sure if it is faster. But if you like you could give it a try.

The following code produces the desired output:

df = spark.createDataFrame([('s1','o1'),('s1','o3'),('s2','o1'),('s2','o2')]).toDF('s','o')
df_label = spark.createDataFrame([('s1','s1_en','en'),('s1','s1_fr','fr'),('s2','s2_fr','fr'),('o1','o1_fr','fr'),('o1','o1_en','en'),('o2','o2_fr','fr')]).toDF('e','name','lang')
df = df.join(df_label,[(col('s')==col('e')) | \
  (col('o')==col('e'))]).drop('e').\   #combine the two join conditions
  withColumn("o_name",when(col("name").startswith("o"),col("name")).otherwise(None)).\
  withColumn("s_name",when(col("name").startswith("s"),col("name")).otherwise(None)).\ #create the o_name and s_name cols
  groupBy("s","o").agg(collect_list("o_name").alias("o_name"),collect_list("s_name").alias("s_name")).\
  #perform a group to aggregate the required vales
  select("s","o",explode("o_name").alias("o_name"),"s_name").\ # explode the lists from the group to attach it to the correct pairs of o and s
  select("s","o",explode("s_name").alias("s_name"),"o_name").\
  withColumn("o_lang", col("o_name").substr(-2,2)).\
  withColumn("lang", col("s_name").substr(-2,2)).filter(col("o_lang")==col("lang")).drop("o_lang")
  #manually create the o_lang and lang columns 

Result:

+---+---+------+------+----+
|s  |o  |s_name|o_name|lang|
+---+---+------+------+----+
|s2 |o2 |s2_fr |o2_fr |fr  |
|s2 |o1 |s2_fr |o1_fr |fr  |
|s1 |o1 |s1_fr |o1_fr |fr  |
|s1 |o1 |s1_en |o1_en |en  |
+---+---+------+------+----+

Upvotes: 1

Related Questions