Reputation: 18894
I'm building an analysis tool for public transportation data and want to reorder data in a pandas dataframe that can be best explained using the following example:
My initial shape of data is:
Population GDP per capita
date 2015 2016 2017 2015 2016 2017
country
France 66593366.0 66859768.0 67118648.0 40564.460707 41357.986933 42850.386280
Germany 81686611.0 82348669.0 82695000.0 47810.836011 48943.101805 50638.890964
Italy 60730582.0 60627498.0 60551416.0 36640.115578 38380.172412 39426.940797
Spain 46444832.0 46484062.0 46572028.0 34818.120507 36305.222132 37997.852337
I wan't to reshape the dataframe so that the dates are the toplevel index and the currently lower level information Population
and GDP per capita
is on the lower level. The resulting dataframe should look as follows:
2015 2016 2017
date Population GDP per capita Population GDP per capita Population GDP per capita
country
France 66593366.0 40564.460707 66859768.0 41357.986933 67118648.0 42850.386280
Germany 81686611.0 47810.836011 82348669.0 48943.101805 82695000.0 50638.890964
Italy 60730582.0 36640.115578 60627498.0 38380.172412 60551416.0 39426.940797
Spain 46444832.0 34818.120507 46484062.0 36305.222132 46572028.0 37997.852337
How can I achieve this using pandas? I've been experimenting with swaplevel
but was not able to get the expected results.
The dataframe is obtained from the following data with a pivot
operation:
country date Population GDP per capita GNI per capita
1 Germany 2017 82695000.0 50638.890964 51680.0
2 Germany 2016 82348669.0 48943.101805 49770.0
3 Germany 2015 81686611.0 47810.836011 48690.0
60 Spain 2017 46572028.0 37997.852337 37990.0
61 Spain 2016 46484062.0 36305.222132 36300.0
62 Spain 2015 46444832.0 34818.120507 34740.0
119 France 2017 67118648.0 42850.386280 43790.0
120 France 2016 66859768.0 41357.986933 42020.0
121 France 2015 66593366.0 40564.460707 41100.0
237 Italy 2017 60551416.0 39426.940797 39640.0
238 Italy 2016 60627498.0 38380.172412 38470.0
239 Italy 2015 60730582.0 36640.115578 36440.0
And the following pivot
:
df_p = df_small.pivot(
index='country',
columns='date',
values=['Population', 'GDP per capita'])
Upvotes: 2
Views: 97
Reputation: 38425
Swap levels and sort_index,
df_p.columns = df_p.columns.swaplevel(1,0)
df_p = df_p.sort_index(axis = 1)
date 2015 2016 2017
GDP per capita Population GDP per capita Population GDP per capita Population
country
France 40564.460707 66593366.0 41357.986933 66859768.0 42850.386280 67118648.0
Germany 47810.836011 81686611.0 48943.101805 82348669.0 50638.890964 82695000.0
Italy 36640.115578 60730582.0 38380.172412 60627498.0 39426.940797 60551416.0
Spain 34818.120507 46444832.0 36305.222132 46484062.0 37997.852337 46572028.0
Upvotes: 2
Reputation: 5331
At a broad level, you want to do something like this:
df.pivot(index='country', columns='date', values=['GDP per capita' , 'Population']) \
.reorder_levels(['date', None], axis=1) \ # the multiindex doesn't get a name, so None
.sort_index(level=[0, 1], axis=1, ascending=[True, False])
First, you do the pivot. Then, reorder the levels to put the date at the top. That creates something that isn't quite right though, where the MultiIndex then provides an entry for every single element.
So second, sort the columns index by its levels to group them. And you end up with this:
date 2015 2016 2017
Population GDP per capita Population GDP per capita Population GDP per capita
country
France 66593366.0 40564.460707 66859768.0 41357.986933 67118648.0 42850.386280
Germany 81686611.0 47810.836011 82348669.0 48943.101805 82695000.0 50638.890964
Italy 60730582.0 36640.115578 60627498.0 38380.172412 60551416.0 39426.940797
Spain 46444832.0 34818.120507 46484062.0 36305.222132 46572028.0 37997.852337
Also, it'd be great to find a way to easily read in your data instead of having to gerrymander out a system using pd.read_csv(string_io_obj, sep='\s\s+')
but that's just a minor quibble.
By passing explicit sorting instructions for both levels, you can also make level=1
for the columns have reverse order to get Population before per cap GDP. That might not work in other cases where someone may want explicit ordering that is not coincidentally alphabetic (or the reverse thereof).
Upvotes: 1