Reputation: 93
I've generated a list dictionaries by iterating a function n
times. Therefore, as a result for d
, I have n
dictionaries distincts. This is d
:
d = {'Insumos' : ["%s" % frame['DESCRIÇÃO'].unique()], 'Valor previsto' : ['%.2f' % y_pred_fut],
'MAPE' : [ '%.2f' % mean_absolute_percentage_error(y_mat_val, y_pred)],
'MAE' : ['%.2f' %mean_absolute_error(y_mat_val, y_pred)], 'r2' : ['%.2f' % r2_score(y_mat_val, y_pred)]}
And this is the result for n
a specific iteration of d
:
{'Insumos': ["['ABUTILOM (ABUTILON STRIATUM)']"], 'Valor previsto': ['30.56'], 'MAPE': ['5.59'], 'MAE': ['1.60'], 'r2': ['-16.70']}
{'Insumos': ["['ACALIFA (ACALYPHA WILKESIANA)']"], 'Valor previsto': ['31.22'], 'MAPE': ['3.24'], 'MAE': ['0.96'], 'r2': ['-2.24']}
{'Insumos': ['[\'ACIONADOR MANUAL TIPO "QUEBRE O VIDRO"\']'], 'Valor previsto': ['72.52'], 'MAPE': ['4.76'], 'MAE': ['3.21'], 'r2': ['-17.48']}
{'Insumos': ["['ADUBO QUÍMICO NPK, 10:10:10']"], 'Valor previsto': ['2.71'], 'MAPE': ['5.02'], 'MAE': ['0.12'], 'r2': ['0.41']}
If I apply pd.DataFrame.from_records(d)
, I get n
distinct dataframes as below:
0 ['ABUTILOM (ABUTILON STRIATUM)'] 1.60 5.59 30.56 -16.70
Insumos MAE MAPE Valor previsto r2
0 ['ACALIFA (ACALYPHA WILKESIANA)'] 0.96 3.24 31.22 -2.24
Insumos ... r2
0 ['ACIONADOR MANUAL TIPO "QUEBRE O VIDRO"'] ... -17.48
[1 rows x 5 columns]
Insumos MAE MAPE Valor previsto r2
0 ['ADUBO QUÍMICO NPK, 10:10:10'] 0.12 5.02 2.71 0.41
Insumos MAE MAPE Valor previsto r2
0 ['ALAMANDA (ALLAMANDA NERIIFOLIA)'] 2.13 7.03 32.93 -8.51
Insumos ... r2
0 ['ALVENARIA DE EMBASAMENTO - TIJOLOS MACIÇOS C... ... -1.83
[1 rows x 5 columns]
.
.
.
I want to get all the n
distinct dictionaries resulting from n
iterations of d
and to make a unique dataframe.
Thanks!
Upvotes: 1
Views: 56
Reputation: 973
As you feed one d
to pd.DataFrame
it can only produce DataFrame with that one line. You need to combine d
values. The simplest (but not the most efficient) way is to create a list
and add each calculated d
in it with append(d)
like that
d_list = []
for some_data in some_data_source:
d = get_d(some_data)
d_list.append(d)
df = pd.DataFrame(d_list)
A list of dicts will produce DataFrame like you want.
P.S. And it is not clear, why you embrace one value in a dict like here
'MAPE' : [ '%.2f' % mean_absolute_percentage_error(y_mat_val, y_pred)]
It would make it difficult to manipulate later. Single value is better to be stored as is
'MAPE' : '%.2f' % mean_absolute_percentage_error(y_mat_val, y_pred)
And if you want to make some calculations in DataFrame, you'd better not convert the value into string, but store the value. You can convert to string later
'MAPE' : mean_absolute_percentage_error(y_mat_val, y_pred)
Upvotes: 1
Reputation: 610
You need to use from_dict
rather than from_records
if you have a dictionary.
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.from_dict.html
If you have multiple input dictionaries, put your dictionaries into a list:
d = [
{'Insumos': ["['ABUTILOM (ABUTILON STRIATUM)']"], 'Valor previsto': ['30.56'], 'MAPE': ['5.59'], 'MAE': ['1.60'], 'r2': ['-16.70']},
{'Insumos': ["['ACALIFA (ACALYPHA WILKESIANA)']"], 'Valor previsto': ['31.22'], 'MAPE': ['3.24'], 'MAE': ['0.96'], 'r2': ['-2.24']},
{'Insumos': ['[\'ACIONADOR MANUAL TIPO "QUEBRE O VIDRO"\']'], 'Valor previsto': ['72.52'], 'MAPE': ['4.76'], 'MAE': ['3.21'], 'r2': ['-17.48']},
{'Insumos': ["['ADUBO QUÍMICO NPK, 10:10:10']"], 'Valor previsto': ['2.71'], 'MAPE': ['5.02'], 'MAE': ['0.12'], 'r2': ['0.41']},
]
Then I think it should work as you intend.
>>>>pd.DataFrame.from_records(d)
Insumos MAE MAPE \
0 [['ABUTILOM (ABUTILON STRIATUM)']] [1.60] [5.59]
1 [['ACALIFA (ACALYPHA WILKESIANA)']] [0.96] [3.24]
2 [['ACIONADOR MANUAL TIPO "QUEBRE O VIDRO"']] [3.21] [4.76]
3 [['ADUBO QU?MICO NPK, 10:10:10']] [0.12] [5.02]
Valor previsto r2
0 [30.56] [-16.70]
1 [31.22] [-2.24]
2 [72.52] [-17.48]
3 [2.71] [0.41]
Upvotes: 1