Reputation: 622
I have this dataframe, I am trying to find the difference in minutes between Date1 and Date2 IF the first two characters are the same and create a column for that. For example, the first row, 22 = 22 so then find the difference between 20:27:45 and 20:52:03
Date1 Date2 ID City
0 22 20:27:45 22 20:52:03 76 Denver
1 02 20:16:28 02 20:49:02 45 Austin
2 15 19:35:09 15 20:52:44 233 Chicago
3 30 19:47:53 30 20:18:01 35 Detroit
4 09 19:01:52 09 19:45:26 342 New York City
This is what I've tried so far:
(pd.to_datetime(data['Date1'].str[3:]).dt.minute - pd.to_datetime(data['Date2'].str[3:]).dt.minute)
This works fine but I want to add that condition in here. I tried creating a function:
def f(data):
if data['Date1'][:3] == data['Date2'][:3]:
return pd.to_datetime(data['Date1'][3:]).dt.minute - pd.to_datetime(data['Date2'][3:]).dt.minute
Getting Error:
AttributeError: ("'Timestamp' object has no attribute 'dt'", 'occurred at index 0')
I know it's nonsensical to be adding in a pd.to_datetime to a series object but how can I convert this into a timestamp and find the difference in minutes?
Upvotes: 1
Views: 148
Reputation: 455
Assuming your date columns are currently strings, you can parse the whole day hour:minute:second string, then do an apply based on the day attribute of the timestamp
I changed the day of one of the values to demonstrate what happens if the days aren't equal
def diff_func(x):
date_1 = pd.to_datetime(x.Date1, format='%d %H:%M:%S')
date_2 = pd.to_datetime(x.Date2, format='%d %H:%M:%S')
if date_1.day == date_2.day:
return (date_2-date_1).seconds / 60
else:
return None
df['minute_difference'] = df.apply(diff_func, axis=1)
Date1 Date2 minute_difference
0 22 20:27:45 22 20:52:03 24.300000
1 03 20:16:28 02 20:49:02 NaN
2 15 19:35:09 15 20:52:44 77.583333
3 30 19:47:53 30 20:18:01 30.133333
4 09 19:01:52 09 19:45:26 43.566667
Upvotes: 2
Reputation: 42916
You can use Series.str.slice
to create the day columns, then pd.to_datetime
to create datetime objects. And finally use np.where
to conditionally fill the new column called Difference
:
df['Date1_day'] = df['Date1'].str.slice(start=0, stop=3)
df['Date2_day'] = df['Date2'].str.slice(start=0, stop=3)
df['Date1'] = pd.to_datetime(df['Date1'].str.slice(start=3))
df['Date2'] = pd.to_datetime(df['Date2'].str.slice(start=3))
df['Difference'] = np.where(df['Date1_day'] == df['Date2_day'],
df['Date2'] - df['Date1'],
np.NaN)
df.drop(['Date1_day', 'Date2_day'], axis=1, inplace=True)
print(df)
Date1 Date2 ID City Difference
0 2019-04-11 20:27:45 2019-04-11 20:52:03 76 Denver 00:24:18
1 2019-04-11 20:16:28 2019-04-11 20:49:02 45 Austin 00:32:34
2 2019-04-11 19:35:09 2019-04-11 20:52:44 233 Chicago 01:17:35
3 2019-04-11 19:47:53 2019-04-11 20:18:01 35 Detroit 00:30:08
4 2019-04-11 19:01:52 2019-04-11 19:45:26 342 New York City 00:43:34
Upvotes: 1