Reputation: 684
So I have two value columns and two weight columns in a Pandas DataFrame, and I want to generate a third column that is the grouped by, weighted, average of those two columns.
So for:
df = pd.DataFrame({'category':['a','a','b','b'],
'var1':np.random.randint(0,100,4),
'var2':np.random.randint(0,100,4),
'weights1':np.random.random(4),
'weights2':np.random.random(4)})
df
category var1 var2 weights1 weights2
0 a 84 45 0.955234 0.729862
1 a 49 5 0.225470 0.159662
2 b 77 95 0.957212 0.991960
3 b 27 65 0.491877 0.195680
I'd want to accomplish:
df
category var1 var2 weights1 weights2 average
0 a 84 45 0.955234 0.729862 67.108023
1 a 49 5 0.225470 0.159662 30.759124
2 b 77 95 0.957212 0.991960 86.160443
3 b 27 65 0.491877 0.195680 37.814851
I've already accomplished this using just arithmetic operators like this:
df['average'] = df.groupby('category', group_keys=False) \
.apply(lambda g: (g.weights1 * g.var1 + g.weights2 * g.var2) / (g.weights1 + g.weights2))
But I want to generalize it to using numpy.average, so I could for example take the weighted average of 3 columns or more.
I'm trying something like this, but it doesn't seem to work:
df['average'] = df.groupby('category', group_keys=False) \
.apply(lambda g: np.average([g.var1, g.var2], axis=0, weights=[g.weights1, g.weights2]))
returning
TypeError: incompatible index of inserted column with frame index
Can anyone help me do this?
Upvotes: 5
Views: 295
Reputation: 323226
I don't even think you need groupby
here. Notice, this matches the output with apply
+ lambda
.
Try this:
col=df.drop('category',1)
s=col.groupby(col.columns.str.findall(r'\d+').str[0],axis=1).prod().sum(1)
s/df.filter(like='weight').sum(1)
Out[33]:
0 67.108014
1 30.759168
2 86.160444
3 37.814871
dtype: float64
Upvotes: 4
Reputation: 455
Since you have one value in average column for every row in the df, you don't really need to groupby. You just need a dynamic way of computing the average for a variable number of 'varXXX'
columns.
The answer below relies on the same number of 'var' columns and 'weights' columns, with a consistent naming pattern, as it constructs the column name string
df = pd.DataFrame({'category': ['a', 'a', 'b', 'b'],
'var1': np.random.randint(0, 100, 4),
'var2': np.random.randint(0, 100, 4),
'var3': np.random.randint(0, 100, 4),
'weights1': np.random.random(4),
'weights2': np.random.random(4),
'weights3': np.random.random(4)
})
n_cols = len([1 for i in df.columns if i[:3] == 'var'])
def weighted_av_func(x):
numerator = 0
denominator = 0
for i in range(1, n_cols + 1):
numerator += x['var{}'.format(i)] * x['weights{}'.format(i)]
denominator += x['weights{}'.format(i)]
return numerator / denominator
df['average'] = df.apply(weighted_av_func, axis=1)
print(df)
category var1 var2 var3 weights1 weights2 weights3 average
0 a 53 58 2 0.101798 0.073881 0.919632 10.517238
1 a 52 0 26 0.073988 0.816425 0.888792 15.150578
2 b 30 78 46 0.641875 0.029402 0.370237 37.042735
3 b 36 72 92 0.186941 0.663270 0.774427 77.391136
Edit: If you want to use np.average, and can guarantee the ordering of var columns and weights columns in your dataframe, then you could do this:
df['np_average'] = df.apply(
lambda x: np.average(a=x[1:1 + n_cols],
weights=x[n_cols + 1:2 * n_cols + 1]),
axis=1)
Upvotes: 0
Reputation: 1834
This is one approach:
import numpy as np
import pandas as pd
df = pd.DataFrame({'category': ['a', 'a', 'b', 'b'],
'var1': np.random.randint(0, 100, 4),
'var2': np.random.randint(0, 100, 4),
'weights1': np.random.random(4),
'weights2': np.random.random(4)})
df_averages = df[df.columns.difference(['category', 'var1', 'var2'])]
Output:
weights1 weights2
0 0.002812 0.483088
1 0.159774 0.818346
2 0.285366 0.586706
3 0.427240 0.428667
df_averages['Average'] = df_averages.mean(axis=1)
Output:
weights1 weights2 Average
0 0.002812 0.483088 0.242950
1 0.159774 0.818346 0.489060
2 0.285366 0.586706 0.436036
3 0.427240 0.428667 0.427954
df['Averages'] = df_averages['Average'].astype(float)
Output:
category var1 var2 weights1 weights2 Averages
0 a 60 22 0.002812 0.483088 0.242950
1 a 66 63 0.159774 0.818346 0.489060
2 b 18 10 0.285366 0.586706 0.436036
3 b 68 32 0.427240 0.428667 0.427954
Essentially remove the non weighted columns from the dataframe and move the weighted columns to a new one. Then you can apply the mean across the rows of that dataframe and merge it back in since the index will till be the same.
Upvotes: 0