Reputation: 7313
Suppose I have the following data table:
tempmat=matrix(c(1,1,0,4,1,0,0,4,0,1,0,4, 0,0,1,4, 0,0,0,5),5,4,byrow=T)
tempmat=rbind(rep(0,4),tempmat)
tempmat=data.table(tempmat)
names(tempmat)=paste0('prod1vint',1:4)
Which looks like:
prod1vint1 prod1vint2 prod1vint3 prod1vint4
1: 0 0 0 0
2: 1 1 0 4
3: 1 0 0 4
4: 0 1 0 4
5: 0 0 1 4
6: 0 0 0 5
I want to define a new column, TN, that takes the mean row-wise in the following fashion.
The output should be:
prod1vint1 prod1vint2 prod1vint3 prod1vint4 TN
1: 0 0 0 0 NA
2: 1 1 0 4 2.5
3: 1 0 0 4 4
4: 0 1 0 4 4
5: 0 0 1 4 4
6: 0 0 0 5 NA
The NA's arise because in 1: there are no nonzero elements, and in 6: there are no nonzero elements to the right of the first nonzero element.
Upvotes: 4
Views: 80
Reputation: 66819
You can iterate over columns, only operating when non-zero and after the first non-zero col in that row:
DT[, `:=`(n = 0L, s = 0, v = NA_real_)]
for (k in sprintf("prod1vint%s", 1:4))
DT[get(k) != 0, `:=`(s = s + (n > 0)*get(k), n = n + 1L)]
DT[n > 1L, v := s/(n - 1)][]
prod1vint1 prod1vint2 prod1vint3 prod1vint4 n s v
1: 0 0 0 0 0 0 NA
2: 1 1 0 4 3 5 2.5
3: 1 0 0 4 2 4 4.0
4: 0 1 0 4 2 4 4.0
5: 0 0 1 4 2 4 4.0
6: 0 0 0 5 1 0 NA
Because this is vectorized, doesn't coerce to matrix and operates selectively, I expect that it is pretty efficient. The get
part is awkward. but could be avoided like...
DT[, `:=`(n = 0L, s = 0, v = NA_real_)]
for (k in sprintf("prod1vint%s", 1:4)){
expr = substitute(DT[k != 0, `:=`(s = s + (n > 0)*k, n = n + 1L)], list(k = as.name(k)))
eval(expr)
}
DT[n > 1L, v := s/(n - 1)][]
Upvotes: 0
Reputation: 887691
Here is one option with melt
library(data.table)
library(dplyr)
TN <- melt(tempmat[, rid := seq_len(.N)], id.var = 'rid')[,
{i1 <- cumsum(value) > 0
mean(na_if(value[i1][-1], 0), na.rm = TRUE)}, rid]$V1
tempmat[, TN := TN][]
Or using tidyverse
library(tidyverse)
tempmat %>%
mutate(TN = pmap(., ~ c(...) %>%
keep(., cumsum(.) > 0) %>%
tail(-1) %>%
na_if(0) %>%
mean(na.rm = TRUE)))
Or another option is to transpose the dataset and then do the colwise operation
t(tempmat) %>%
as.data.frame %>%
summarise_all(list(~ mean(na_if(.[cumsum(.) > 0], 0)[-1],
na.rm = TRUE))) %>%
unlist %>%
mutate(tempmat, TN = .)
Or using a vectorized approach
library(matrixStats)
m1 <- rowCumsums(as.matrix(tempmat)) > 0
m1[cbind(seq_len(nrow(m1)), max.col(m1, 'first'))] <- FALSE
rowMeans(na_if(tempmat * NA^!m1, 0), na.rm = TRUE)
Or using apply
apply(tempmat, 1, FUN = function(x)
mean(na_if(x[cumsum(x) > 0], 0)[-1], na.rm = TRUE))
Upvotes: 2
Reputation: 389175
Using apply
row-wise we can first find out indices in the row which are not 0. Then calculate the mean
for non-zero values if
there is atleast one non-zero value and the non-zero value is not present in the last column else
return NA
.
tempmat$TN <- apply(tempmat, 1, function(x) {
inds <- x != 0
if (any(inds) & which.max(inds) != length(x))
mean(Filter(function(f) f > 0, x[(which.max(inds) + 1) : length(x)]))
else
NA
})
tempmat
# prod1vint1 prod1vint2 prod1vint3 prod1vint4 TN
#1: 0 0 0 0 NA
#2: 1 1 0 4 2.5
#3: 1 0 0 4 4.0
#4: 0 1 0 4 4.0
#5: 0 0 1 4 4.0
#6: 0 0 0 5 NA
Upvotes: 2