Reputation: 1
I'm trying to write Prolog logic for the first time, but I'm having trouble. I am to write logic that takes two lists and checks for like elements between the two. For example, consider the predicate similarity/2
:
?- similarity([2,4,5,6,8], [1,3,5,6,9]).
true.
?- similarity([1,2,3], [5,6,8]).
false.
The first query will return true
as those two lists have 5 and 6 in common. The second returns false
as there are no common elements between the two lists in that query.
I CANNOT use built in logic, such as member, disjoint, intersection, etc. I am thinking of iterating through the first list provided, and checking to see if it matches each element in the second list. Is this an efficient approach to this problem? I will appreciate any advice and help. Thank you so much.
Upvotes: 0
Views: 808
Reputation: 374
Writing Prolog for the first time can be really daunting, since it is unlike many traditional programming languages that you will most likely encounter; however it is a very rewarding experience once you've got a grasp on this new style of programming! Since you mention that you are writing Prolog for the first time I'll give some general tips and tricks about writing Prolog, and then move onto some hints to your problem, and then provide what I believe to be a solution.
You can think of every Prolog program that you write to be intrinsically recursive in nature. i.e. you can provide it with a series of "base-cases" which take the following form:
human(John).
or wildling(Ygritte)
In my opinion, these rules should always be the first ones that you write. Try to break down the problem into its simplest case and then work from there.
On the other hand, you can also provide it with more complex rules which will look something like this: contains(X, [H|T]):- contains(X, T)
The key bit is that writing a rule like this is very much equivalent to writing a recursive function in say, Python. This rule does a lot of the heavy lifting in looking to see whether a value is contained in a list, but it isn't complete without a "base-case". A complete contains rule would actually be two rules put together:
contains(X, [X|_]).
contains(X, [H|T]):-contains(X, T).
The big takeaway from this is to try and identify the simple cases of your problem, which can act like base cases in a recursive function, and then try to identify how you want to "recurse" and actually do work on the problem at hand.
Part of the great thing about Prolog is the pattern matching system that it has in place. You should 100% use this to your advantage whenever you can -- it is especially helpful when trying to do anything with lists. For example:
head(X, [X|T]).
Will evaluate to true when called thusly: head(1, [1, 2, 3])
because intrinsic in the rule is the matching of X. This sort of pattern matching on the first element of a list is incredibly important and really the key way that you will do any work on lists in Prolog. In my experience, pattern matching on the head of a list will often be one of the "base-cases" that I mentioned beforehand.
Another key component of how Prolog works is that it takes a "top-down" approach to reading code. What I mean by that is that every time a rule is called (except for definitions of the form king(James).
), Prolog starts at line 1 and continues until it reaches a rule that is true or the end of the file. Therefore, the ordering of your rules is incredibly important. I'm assuming that you know that you can combine rules together via a comma to indicate logical AND, but what is maybe more subtle is that if you order one rule above another, it can act as a logical OR, simply because it will be evaluated before another rule, and can potentially cause the program to recurse.
Now that I've gotten all of my general advice out of the way, I'll actually reference the given problem. First, I'd write my "base-case". What would happen if you are given two lists whose first elements are the same?
If the first element in each list is not the same, then they have to be different. So, you have to look through the second list to see if this element is contained anywhere in the rest of the list. What kind of rule would this produce?
OR it could be the case that the first element of the first list is not contained within the second at all, in which case you have to advance once in the first list, and start again with the second list. What kind of rule would this produce?
In the end, I would say that your approach is the correct one to take, and I have provided my own solution below:
similarity([H|_], [H|_]).
similarity(H1|T1], [_|T2]):- similarity([H1|T1], T2).
similarity([_|T1], [H2|T2]):- similarity(T1, [H2|T2]).
Hope all of this helps in some way!
Upvotes: 3