Reputation: 4791
Following an answer from here, I am trying to remove rows from one dataframe which are present in other dataframe.
It works well for this input:
csv1:
sale_date,price,latitude,longitude
Wed May 21 00:00:00 EDT 2008,141000,38.423251,-121.444489
Wed May 21 00:00:00 EDT 2008,146250,38.48742
csv2:
sale_date,price,latitude,longitude
Wed May 21 00:00:00 EDT 2008,146250,38.48742
Code:
>>> a = pd.read_csv('../test.csv', escapechar='\\')
>>> a
sale_date price latitude longitude
0 Wed May 21 00:00:00 EDT 2008 141000 38.423251 -121.444489
1 Wed May 21 00:00:00 EDT 2008 146250 38.487420 NaN
>>> b = pd.read_csv('../test1.csv', escapechar='\\')
>>> b
sale_date price latitude longitude
0 Wed May 21 00:00:00 EDT 2008 146250 38.48742 NaN
>>> pd.concat([a,b]).drop_duplicates(keep=False)
sale_date price latitude longitude
0 Wed May 21 00:00:00 EDT 2008 141000 38.423251 -121.444489
This is working as expected. But as soon as there are other more rows in first csv, it doesnt work.
Scenario 2 with extra row in csv1
csv1:
sale_date,price,latitude,longitude
Wed May 21 00:00:00 EDT 2008,141000,38.423251,-121.444489
Wed May 21 00:00:00 EDT 2008,146250,38.48742
Wed May 21 00:00:00 EDT 2008,147308,38.658246a,-121.375469a
csv2:
sale_date,price,latitude,longitude
Wed May 21 00:00:00 EDT 2008,146250,38.48742
Code:
>>> a = pd.read_csv('../test.csv', escapechar='\\')
>>> a
sale_date price latitude longitude
0 Wed May 21 00:00:00 EDT 2008 141000 38.423251 -121.444489
1 Wed May 21 00:00:00 EDT 2008 146250 38.48742 NaN
2 Wed May 21 00:00:00 EDT 2008 147308 38.658246a -121.375469a
>>> b = pd.read_csv('../test1.csv', escapechar='\\')
>>> b
sale_date price latitude longitude
0 Wed May 21 00:00:00 EDT 2008 146250 38.48742 NaN
>>> pd.concat([a,b]).drop_duplicates(keep=False)
sale_date price latitude longitude
0 Wed May 21 00:00:00 EDT 2008 141000 38.423251 -121.444489
1 Wed May 21 00:00:00 EDT 2008 146250 38.48742 NaN
2 Wed May 21 00:00:00 EDT 2008 147308 38.658246a -121.375469a
0 Wed May 21 00:00:00 EDT 2008 146250 38.4874 NaN
Notice that it also changed the latitude value for second duplicated in the merged row to 38.4874
from 38.48742
Am I missing something here or pandas has a bug?
Upvotes: 1
Views: 3513
Reputation: 862761
Like @ayhan commented there is problem in a
DataFrame are strings between numeric in columns latitude
and longitude
, so all columns are casted to strings.
In another DataFrame are columns by default casted to float
s.
One possible solution is use dtype
parameter for b
DataFrame:
b = pd.read_csv('../test1.csv', escapechar='\\', dtype={'latitude':str, 'longitude':str})
df = pd.concat([a,b]).drop_duplicates(keep=False)
print (df)
sale_date price latitude longitude
0 Wed May 21 00:00:00 EDT 2008 141000 38.423251 -121.444489
2 Wed May 21 00:00:00 EDT 2008 147308 38.658246a -121.375469a
Or use to_numeric
for columns in a
:
a['latitude'] = pd.to_numeric(a['latitude'], errors='ignore')
a['longitude'] = pd.to_numeric(a['longitude'], errors='ignore')
df = pd.concat([a,b]).drop_duplicates(keep=False)
print (df)
sale_date price latitude longitude
0 Wed May 21 00:00:00 EDT 2008 141000 38.423251 -121.444489
2 Wed May 21 00:00:00 EDT 2008 147308 38.658246a -121.375469a
Upvotes: 1