Reputation: 99
I have a pyspark dataframe in which I want to use two of its columns to output a dictionary.
input pyspark dataframe:
col1|col2|col3
v | 3 | a
d | 2 | b
q | 9 | g
output:
dict = {'v': 3, 'd': 2, 'q': 9}
how should I do this efficiently?
Upvotes: 2
Views: 4136
Reputation: 1279
Given your example, after selecting the applicable columns and converting to an rdd, collectAsMap
will accomplish the desired dictionary without any additional steps:
df.select('col1', 'col2').rdd.collectAsMap()
Upvotes: 2
Reputation: 2767
few different options here depending on the format needed ... check this out ... am using structured api ... if you need to persist then either save as json dict or preserve schema with parquet
from pyspark.sql.functions import to_json
from pyspark.sql.functions import create_map
from pyspark.sql.functions import col
df = spark\
.createDataFrame([\
('v', 3, 'a'),\
('d', 2, 'b'),\
('q', 9, 'g')],\
["c1", "c2", "c3"])
mapDF = df.select(create_map(col("c1"), col("c2")).alias("mapper"))
mapDF.show(3)
+--------+
| mapper|
+--------+
|[v -> 3]|
|[d -> 2]|
|[q -> 9]|
+--------+
dictDF = df.select(to_json(create_map(col("c1"), col("c2")).alias("mapper")).alias("dict"))
dictDF.show()
+-------+
| dict|
+-------+
|{"v":3}|
|{"d":2}|
|{"q":9}|
+-------+
keyValueDF = df.selectExpr("(c1, c2) as keyValueDict").select(to_json(col("keyValueDict")).alias("keyValueDict"))
keyValueDF.show()
+-----------------+
| keyValueDict|
+-----------------+
|{"c1":"v","c2":3}|
|{"c1":"d","c2":2}|
|{"c1":"q","c2":9}|
+-----------------+
Upvotes: 1
Reputation: 491
I believe you can achieve it by converting the DF (with only the two columns you want) to rdd:
data_rdd = data.selet(['col1', 'col2']).rdd
create a rdd containing key, pair with both columns using rdd.map function:
kp_rdd = data_rdd.map(lambda row : (row[0],row[1]))
and then collect as map:
dict = kp_rdd.collectAsMap()
that's the main idea, sorry I don't have an instance of pyspark running right now to test it.
Upvotes: 4