Reputation: 49804
I am using Python 3.7.3.
I try to upgrade RxPy from 1.6.1 (1.x) to 3.0.0a3 (3.x).
Old code using RxPy 1.x
from rx import Observable
import psutil
import numpy as np
import pylab as plt
cpu_data = (Observable
.interval(100) # Each 100 milliseconds
.map(lambda x: psutil.cpu_percent())
.publish())
cpu_data.connect()
def monitor_cpu(npoints):
lines, = plt.plot([], [])
plt.xlim(0, npoints)
plt.ylim(0, 100)
cpu_data_window = cpu_data.buffer_with_count(npoints, 1)
def update_plot(cpu_readings):
lines.set_xdata(np.arange(len(cpu_readings)))
lines.set_ydata(np.array(cpu_readings))
plt.draw()
alertpoints = 4
high_cpu = (cpu_data
.buffer_with_count(alertpoints, 1)
.map(lambda readings: all(r > 20 for r in readings)))
label = plt.text(1, 1, "normal")
def update_warning(is_high):
if is_high:
label.set_text("high")
else:
label.set_text("normal")
high_cpu.subscribe(update_warning)
cpu_data_window.subscribe(update_plot)
plt.show()
if __name__ == '__main__':
monitor_cpu(10)
If you run the code you can see a real-time CPU monitor chart.
However, after I installed the new RxPy by
pip3 install --pre rx
with new code below, it only shows white one without any dynamic chart.
And the function update_plot
actually never ran. Any idea?
New code using RxPy 3.x
from rx import interval, operators as op
import psutil
import numpy as np
import pylab as plt
cpu_data = interval(100).pipe( # Each 100 milliseconds
op.map(lambda x: psutil.cpu_percent()),
op.publish())
cpu_data.connect()
def monitor_cpu(npoints):
lines, = plt.plot([], [])
plt.xlim(0, npoints)
plt.ylim(0, 100)
cpu_data_window = cpu_data.pipe(
op.buffer_with_count(npoints, 1))
def update_plot(cpu_readings):
print('update') # here never runs
lines.set_xdata(np.arange(len(cpu_readings)))
lines.set_ydata(np.array(cpu_readings))
plt.draw()
alertpoints = 4
high_cpu = cpu_data.pipe(
op.buffer_with_count(alertpoints, 1),
op.map(lambda readings: all(r > 20 for r in readings)))
label = plt.text(1, 1, "normal")
def update_warning(is_high):
if is_high:
label.set_text("high")
else:
label.set_text("normal")
high_cpu.subscribe(update_warning)
cpu_data_window.subscribe(update_plot)
plt.show()
if __name__ == '__main__':
monitor_cpu(10)
Upvotes: 0
Views: 351
Reputation: 69218
Time units are now in seconds
cpu_data = interval(0.1).pipe( # Each 100 milliseconds
op.map(lambda x: psutil.cpu_percent()),
op.publish())
cpu_data.connect()
Upvotes: 1