Reputation: 8372
When I run the code below in a Jupyter Notebook, I get a map of the world, colored in red.
There are fine white-ish lines between the countries. Is there a way to plot the world so that all countries are solid and there's no line in between?
I'm asking, because my real world usecase is a fine grid that behaves just like the world map: Each grid shape has a fine outline which I do not want to have in the plot. (Update, since this was asked: The grid shapes will not have the same fill color.
import geopandas as gpd
import geoplot as gplt
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
world['total'] = 1
world.plot(column='total', cmap='Set1')
For the grid example, the grid files are at https://opendata-esri-de.opendata.arcgis.com/datasets/3c1f46241cbb4b669e18b002e4893711_0 A simplified example that shows the problem.
sf = 'Hexagone_125_km/Hexagone_125_km.shp'
shp = gpd.read_file(sf)
shp.crs = {'init': 'epsg:4326'}
shp['sum'] = 1 # for example, fill sum with something
shp.plot(figsize=(20,20), column='sum', cmap='gnuplot', alpha=1, legend=True)
Upvotes: 8
Views: 8240
Reputation: 339430
The white lines are due to antialiasing. This usually makes the visual more smooth, but leads to white lines in between different shapes. You can turn off anialiasing via
antialiased=False
That has the inevitable drawback of the plot looking pixelated.
An alternative is to give the patches an edge with a certain linewidth. The edges should probably have the same color as the faces, so
edgecolor="face", linewidth=0.4
would be an option. This removes the white lines, but introduces a slight "searing" effect (You'll notice mainly looking at islands like Indonesia or Japan). This will be the more noticable, the smaller the features, so it may be irrelevant for showing a hexbin plot. Still, playing a bit with the linewidth might improve the result further.
Code for reproduction:
import numpy as np; np.random.seed(42)
import geopandas as gpd
import matplotlib.pyplot as plt
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
world['total'] = np.random.randint(0,10, size=len(world))
fig, (ax1, ax2, ax3) = plt.subplots(nrows=3, figsize=(7,10))
world.plot(column='total', cmap='Set1', ax=ax1)
world.plot(column='total', cmap='Set1', ax=ax2, antialiased=False)
world.plot(column='total', cmap='Set1', ax=ax3, edgecolor="face", linewidth=0.4)
ax1.set_title("original")
ax2.set_title("antialiased=False")
ax3.set_title("edgecolor='face', linewidth=0.4")
plt.tight_layout()
plt.savefig("world.png")
plt.show()
Upvotes: 15