Reputation: 59
Consider an array
a = np.array([5, 12, 56, 36])
and a pandas dataframe
b = pandas.DataFrame(np.array([1, 3, 0, 3, 1, 0, 2])
how does one replace the values on b
by using its values as indexes for a
, i.e., the intended value is:
c = pandas.DataFrame([12, 36, 5, 36, 12, 5, 56])
Can't quite figure this out.
Upvotes: 1
Views: 921
Reputation: 323316
Let us try something different Series.get
pd.Series(a).get(b[0])
Out[57]:
1 12
3 36
0 5
3 36
1 12
0 5
2 56
dtype: int32
Upvotes: 1
Reputation: 38415
One way is using apply,
c = b.apply(lambda x: a[x])
Or by indexing the numpy array and passing the values to DataFrame,
c = pd.DataFrame(a[b[0].values])
0
0 12
1 36
2 5
3 36
4 12
5 5
6 56
Upvotes: 2
Reputation: 95
map can be used.
b.a.map({i:j for i,j in enumerate(a)})
0 12
1 36
2 5
3 36
4 12
5 5
6 56
Name: a, dtype: int64
Upvotes: 0