lokes
lokes

Reputation: 75

Check if any dates in a group are within specific time intervals for that group in r

I would like to create a new variable that indicates whether a visit_date is within any of the date ranges listed for an id

I've used this code to get row by row comparisons, but I want to expand this and compare all rows of an id to all rows of intervals listed for that id

df <- df %>%
  group_by(id) %>%
  mutate(between_any = ifelse((visit_date >= start & visit_date <= end), 1))

I have also tried creating an interval variable and using crossing(visit_date, interval) before mutating, however I could not get crossing to work for a date object.

Here is some example data:

df <- data.frame(id = c("a","a","a","a","a","b","b","b"),
                 visit_date = c("2001-08-22","2001-09-21","2001-10-30","2001-11-10","2001-12-20","2002-12-22", "2003-04-30","2003-05-10"),
                 start = c(NA,"2001-09-21",NA,"2001-11-10",NA,"2002-12-22", "2003-04-30",NA),
                 end = c(NA, "2001-11-01",NA,"2001-11-10",NA,"2002-12-22","2003-06-01",NA))

> df
id visit_date    start        end
a 2001-08-22       <NA>       <NA>
a 2001-09-21 2001-09-21 2001-11-01
a 2001-10-30       <NA>       <NA>
a 2001-11-10 2001-11-10 2001-11-10
a 2001-12-20       <NA>       <NA>
b 2002-12-22 2002-12-22 2002-12-22
b 2003-04-30 2003-04-30 2003-06-01
b 2003-05-10       <NA>       <NA>

My desired output is the following:

id visit_date      start       end   between_any
a 2001-08-22       <NA>       <NA>      0
a 2001-09-21 2001-09-21 2001-11-01      1
a 2001-10-30       <NA>       <NA>      1
a 2001-11-10 2001-11-10 2001-11-10      1
a 2001-12-20       <NA>       <NA>      0
b 2002-12-22 2002-12-22 2002-12-22      1
b 2003-04-30 2003-04-30 2003-06-01      1
b 2003-05-10       <NA>       <NA>      1

Thanks in advance!

Upvotes: 2

Views: 853

Answers (3)

tmfmnk
tmfmnk

Reputation: 39858

A different possibility could be:

df %>% 
 rowid_to_column() %>%
 full_join(df %>%
            filter(!is.na(start) & !is.na(end)) %>%
            mutate(interval = interval(ymd(start), ymd(end))) %>%
            select(id, interval), by = c("id" = "id")) %>%
 group_by(rowid, id) %>%
 summarise(between_any = max(ymd(visit_date) %within% interval * 1)) %>%
 left_join(df %>%
            rowid_to_column(), by = c("rowid" = "rowid",
                                      "id" = "id")) %>%
 ungroup() %>%
 select(-rowid)
  id    between_any visit_date start      end       
  <fct>       <dbl> <fct>      <fct>      <fct>     
1 a               0 2001-11-08 <NA>       <NA>      
2 a               1 2001-09-21 2001-09-21 2001-11-01
3 a               1 2001-10-30 <NA>       <NA>      
4 a               1 2001-11-10 2001-11-10 2001-11-10
5 a               0 2001-12-20 <NA>       <NA>      
6 b               1 2002-12-22 2002-12-22 2002-12-22
7 b               1 2003-04-30 2003-04-30 2003-06-01
8 b               1 2003-05-10 <NA>       <NA> 

Here it, first, creates the interval variable and then performs a full join based on "id". Second, it checks whether "visit_date" is within any of the intervals per "id" and "rowid". Finally, it joins the results with the original data.

Upvotes: 0

Chris Holbrook
Chris Holbrook

Reputation: 2636

in_range function in the data.table package does exactly this...

library(data.table)

df <- df %>%
  group_by(id) %>%
  mutate(between_any = as.numeric((inrange(visit_date, start, end))))

#> df
#  id visit_date      start        end between_any
#1  a 2001-08-22       <NA>       <NA>           0
#2  a 2001-09-21 2001-09-21 2001-11-01           1
#3  a 2001-10-30       <NA>       <NA>           1
#4  a 2001-11-10 2001-11-10 2001-11-10           1
#5  a 2001-12-20       <NA>       <NA>           0
#6  b 2002-12-22 2002-12-22 2002-12-22           1
#7  b 2003-04-30 2003-04-30 2003-06-01           1
#8  b 2003-05-10       <NA>       <NA>           1

In data.table form...

dt <- setDT(df)      
dt[, between_any := inrange(visit_date, start, end), 
     by = id]

Upvotes: 3

Wil
Wil

Reputation: 3178

My answer isn't as "pretty" as I would like, but it gets you where you are looking to go.

I first convert your dates to dates:

library(lubridate)
library(dplyr)
library(tibble)
library(tidyr)
library(purrr)

df <- data.frame(id = c("a","a","a","a","a","b","b","b"),
                 visit_date = c("2001-08-22","2001-09-21","2001-10-30","2001-11-10","2001-12-20","2002-12-22", "2003-04-30","2003-05-10"),
                 start = c(NA,"2001-09-21",NA,"2001-11-10",NA,"2002-12-22", "2003-04-30",NA),
                 end = c(NA, "2001-11-01",NA,"2001-11-10",NA,"2002-12-22","2003-06-01",NA)) %>%
  mutate_at(-1,as.Date)

> df
  id visit_date      start        end
1  a 2001-08-22       <NA>       <NA>
2  a 2001-09-21 2001-09-21 2001-11-01
3  a 2001-10-30       <NA>       <NA>
4  a 2001-11-10 2001-11-10 2001-11-10
5  a 2001-12-20       <NA>       <NA>
6  b 2002-12-22 2002-12-22 2002-12-22
7  b 2003-04-30 2003-04-30 2003-06-01
8  b 2003-05-10       <NA>       <NA>

Next I create a list of intervals for each group:

df_intervals <- df %>% 
  mutate_at(-1,as.Date) %>%
  filter(!is.na(start),
         !is.na(end)) %>%
  mutate(interval = start %--% end) %>%
  select(id,interval) %>%
  group_by(id)

> df_intervals
# A tibble: 4 x 2
# Groups:   id [2]
  id    interval                      
  <fct> <S4: Interval>                
1 a     2001-09-21 UTC--2001-11-01 UTC
2 a     2001-11-10 UTC--2001-11-10 UTC
3 b     2002-12-22 UTC--2002-12-22 UTC
4 b     2003-04-30 UTC--2003-06-01 UTC

Lastly, I join the intervals data to the original data based on id and search for the visit_date inside the intervals.

df_output <- df %>% as.tbl() %>%
  inner_join(df_intervals) %>%
  mutate(between_any = map2_lgl(visit_date,interval,~ .x >= int_start(.y) & .x <= int_end(.y))) %>%
  group_by(id,visit_date,start,end) %>%
  summarise(between_any = as.numeric(any(between_any)))

> df_output
# A tibble: 8 x 5
# Groups:   id, visit_date, start [8]
  id    visit_date start      end        between_any
  <fct> <date>     <date>     <date>           <dbl>
1 a     2001-08-22 NA         NA                   0
2 a     2001-09-21 2001-09-21 2001-11-01           1
3 a     2001-10-30 NA         NA                   1
4 a     2001-11-10 2001-11-10 2001-11-10           1
5 a     2001-12-20 NA         NA                   0
6 b     2002-12-22 2002-12-22 2002-12-22           1
7 b     2003-04-30 2003-04-30 2003-06-01           1
8 b     2003-05-10 NA         NA                   1

Upvotes: 2

Related Questions